METHOD FOR QUANTITATIVE DETERMINATION OF PHYTOHORMONES IN PLANT TISSUES

M. M. Shcherbatyuk, L. V. Voytenko, V. A. Vasyuk, I. V. Kosakivska


DOI: http://dx.doi.org/10.30970/sbi.1402.624

Abstract


The review analyzes and summarizes information on the history of development and the current state of methodological approaches to the qualitative and quantitative determination of phytohormones in plant tissues. Plant hormones play an indispensable role in many physiological processes during a plant life cycle, from seed’s germination to senescence. The determination of the endogenous hormones concentration is essential for elucidating the role of a particular hormone in any physiological process. A sensitive and quick analytical method of a simultaneous quantitative estimation of the main classes of phytohormones is essential for the investigation of signaling control networks in specific developmental pathways and physiological responses. In plant tissues, phytohormones are present in very low concentrations (from 10-9 M to 10-6 M); hence, the availability of highly effective, comprehensive and reliable analytical techniques for their identification is extremely important. The article gives a brief description of the main classes of plant hormones and outlines their functional activity. The importance of methods for hormones identification in plant tissues and their use in plant physiology and agricultural practice is discussed. The study presents a valid and tested sequence of procedures for the extraction of plant hormones, a methodology for purification of the obtained extracts from interfering substances and an up-to-date method of plant hormones quantification (indole-3-acetic, abscisic, gibberellic, salicylic acids and five forms of cytokinins). The quantification method combines a high-performance liquid chromatography with a mass spectrometry. Four chromatographic methods for the sepa­ration and detection of substances in aliquots as well as ionization conditions for hormones in a mass spectrometer are described. The presented analytical technique is adapted for scientific laboratories in Ukraine.


Keywords


HPLC/MS-analysis, plant hormones, sample preparation

References


1. Abreu M.E., Munné-Bosch S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 2009; 60(4): 1261-1271.
CrossrefPubMedGoogle Scholar

2. Brodersen P., Malinovsky F.G., Hématy K., Newman M.A., Mundy J. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 2005; 138(2): 1037-1045.
CrossrefPubMedGoogle Scholar

3. Chernyad'ev I.I. The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Applied Biochemistry and Microbiology, 2009; 45: 351-362.
CrossrefGoogle Scholar

4. Chiwocha S.D., Abrams S.R., Ambrose S.J., Cutler A.J., Loewen M., Ross A.R., Kermode A.R. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J., 2003; 35(3): 405-417.
CrossrefPubMedGoogle Scholar

5. Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 2010; 61: 651-679.
CrossrefPubMedGoogle Scholar

6. Davière J.M., Achard P. Gibberellin signaling in plants. Development, 2013; 140(6): 1147-1151.
CrossrefPubMedGoogle Scholar

7. Davies P.J. The Plant Hormones: Their Nature, Occurrence, and Functions. In: Davies P.J. (Ed.) Plant Hormones. Dordrecht: Springer, 2010. 1-15.
Crossref ● PubMed ● Google Scholar

8. Dempsey A.D., Klessig D.F. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 2017; 15: 23.
CrossrefPubMedGoogle Scholar

9. Dobrev P., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromato­graphy A, 2002; 950: 21-29.
Crossref Google Scholar

10. Dobrev P., Motyka V., Gaudinová A., Malbeck J., Trávníčková A., Kamínek M., Vaňková R. Transient accumulation of cis- and trans-zeatin type cytokinins and its relation to cytokinin oxidase activity during cell cycle of synchronized tobacco BY-2 cells. Plant Physiology and Biochemistry, 2002; 40(4): 333-337.
CrossrefGoogle Scholar

11. Dobrev P.I., Vankova R. "Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues". In: Shabala S., Cuin T. (Ed.) Plant Salt Tolerance (Methods and Protocols). Totowa, NJ: Humana Press, 2012: 251-261.
CrossrefPubMedGoogle Scholar

12. Dörfling K. Das Hormonsystem der Pflanzen. Stuttgart, New York: Georg Thieme Verlag, 1983. 236 s.

13. Dun E.A., Brewer P.B., Beveridge C.A. Strigolactones: discovery of the elusive shoot bran­ching hormone. Trends in Plant Science, 2009; 14(7): 364-372.
CrossrefPubMedGoogle Scholar

14. Gantait S., Sinniah U.R., Ali N., Sahu N.C. Gibberellins a multifaceted hormone in plant growth regulatory network. Current Protein & Peptide Science, 2015; 16(5): 406-412.
CrossrefPubMedGoogle Scholar

15. Guidelines for the determination of phytohormones (Metodicheskie rekomendatsii po opredeleniyu fitogormonov). Kiev: Naukova Dumka, 1988. 78 p. (In Russian)

16. Gupta R., Chakrabarty S. Gibberellic acid in plant. Still a mystery unresolved. Plant Signaling & Behavior, 2013; 8(9): e25504.
CrossrefPubMedGoogle Scholar

17. Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L-SP. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 2012; 17(3): 172-179.
CrossrefPubMedGoogle Scholar

18. Hirose N., Takei K., Kuroha T. Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentation and translocation. Journal of Experimental Botany, 2008; 59(1): 75-83.
CrossrefPubMedGoogle Scholar

19. Kojima M., Kamada-Nobusada T., Komatsu H., Takei K., Kuroha T., Mizutani M., Ashikari M., Ueguchi-Tanaka M., Matsuoka M., Suzuki K., Sakakibara H. Highly sensitive and high-throuput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiology, 2009; 50(7): 1201-1214.
CrossrefPubMedGoogle Scholar

20. Kulaeva O.N., Prokoptseva O.S. Recent Advances in the Study of Mechanisms of Action of Phytohormones. Biochemistry, 2004; 69: 233-247.
CrossrefPubMedGoogle Scholar

21. Mertens R., Deusneumann B., Weiler E.W. Monoclonal-antibodies for the detection and quantitation of the endogenous plant-growth regulator, abscisic acid. FEBS Letters, 1983; 160(1-2): 269-272.
CrossrefGoogle Scholar

22. Miller C.O., Skoog F., Von Saltza M.H. Strong F.M. Kinetin, a cell division factor from deoxyribonucleic acid. Journal of American Chemical Society, 1955; 77(5): 1392-1392.
CrossrefGoogle Scholar

23. Müller A., Duchting P., Weiler E.W. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta, 2002; 216(1): 44-56.
CrossrefPubMedGoogle Scholar

24. Müller M., Munné-Bosch S. Rapid and Sensitive Hormonal Profiling of Complex Plant Samples by Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectro­metry. Plant Methods, 2011; 7(1): 37.
CrossrefPubMedGoogle Scholar

25. Nawrath C., Métraux J.P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. The Plant Cell, 1999; 11(8): 1393-1404.
CrossrefPubMedGoogle Scholar

26. Pan X., Welti R., Wang X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography tandem mass spectrometry. Phytochemistry, 2008; 69(8):1773-1781.
CrossrefPubMedGoogle Scholar

27. Pan X., Wang X. Profiling of plant hormones by mass spectrometry. Journal of Chromato­graphy B, 2009; 877(26): 2806-2813.
CrossrefPubMedGoogle Scholar

28. Raskin I., Skubatz H., Tang W., Meeuse B.J.D. Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 1990; 66(4): 369-373.
CrossrefGoogle Scholar

29. Rivas-San Vicente M., Plasencia J. Salicylic Acid beyond Defence: Its Role in Plant Growth and Development. Journal of Experimental Botany, 2011; 62(10): 3321-3338.
CrossrefPubMedGoogle Scholar

30. Skoog F., Strong F.M., Miller C.O. Cytokinins. Science, 1965. 148: 532-533.
CrossrefPubMedGoogle Scholar

31. Vasyuk V.A., Lichnevskiy R.V., Kosakivska I.V. Gibberellin-like substances in ontogenesis of the water fern Salvinia natans (Salviniaceae). Ukrainian Botanical Journal, 2016; 73(5): 503-509. (In Ukrainian)
CrossrefGoogle Scholar

32. Werner T., Schmülling T. Cytokinin action in plant development. Current Opinion in Plant Biology, 2009; 12(5): 527-538.
CrossrefPubMedGoogle Scholar

33. Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001; 414: 562-565.
CrossrefPubMedGoogle Scholar

34. Woodward A.W., Bartel B. Auxin: regulation, action, and interaction. Annals of Botany, 2005; 95(5): 707-735.
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.