METHOD FOR QUANTITATIVE DETERMINATION OF PHYTOHORMONES IN PLANT TISSUES
DOI: http://dx.doi.org/10.30970/sbi.1402.624
Abstract
The review analyzes and summarizes information on the history of development and the current state of methodological approaches to the qualitative and quantitative determination of phytohormones in plant tissues. Plant hormones play an indispensable role in many physiological processes during a plant life cycle, from seed’s germination to senescence. The determination of the endogenous hormones concentration is essential for elucidating the role of a particular hormone in any physiological process. A sensitive and quick analytical method of a simultaneous quantitative estimation of the main classes of phytohormones is essential for the investigation of signaling control networks in specific developmental pathways and physiological responses. In plant tissues, phytohormones are present in very low concentrations (from 10-9 M to 10-6 M); hence, the availability of highly effective, comprehensive and reliable analytical techniques for their identification is extremely important. The article gives a brief description of the main classes of plant hormones and outlines their functional activity. The importance of methods for hormones identification in plant tissues and their use in plant physiology and agricultural practice is discussed. The study presents a valid and tested sequence of procedures for the extraction of plant hormones, a methodology for purification of the obtained extracts from interfering substances and an up-to-date method of plant hormones quantification (indole-3-acetic, abscisic, gibberellic, salicylic acids and five forms of cytokinins). The quantification method combines a high-performance liquid chromatography with a mass spectrometry. Four chromatographic methods for the separation and detection of substances in aliquots as well as ionization conditions for hormones in a mass spectrometer are described. The presented analytical technique is adapted for scientific laboratories in Ukraine.
Keywords
Full Text:
PDF (Українська)References
1. Abreu M.E., Munné-Bosch S. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 2009; 60(4): 1261-1271. Crossref ● PubMed ● Google Scholar | ||||
| ||||
2. Brodersen P., Malinovsky F.G., Hématy K., Newman M.A., Mundy J. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 2005; 138(2): 1037-1045. Crossref ● PubMed ● Google Scholar | ||||
| ||||
3. Chernyad'ev I.I. The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress (review). Applied Biochemistry and Microbiology, 2009; 45: 351-362. Crossref ● Google Scholar | ||||
| ||||
4. Chiwocha S.D., Abrams S.R., Ambrose S.J., Cutler A.J., Loewen M., Ross A.R., Kermode A.R. A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J., 2003; 35(3): 405-417. Crossref ● PubMed ● Google Scholar | ||||
| ||||
5. Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 2010; 61: 651-679. Crossref ● PubMed ● Google Scholar | ||||
| ||||
6. Davière J.M., Achard P. Gibberellin signaling in plants. Development, 2013; 140(6): 1147-1151. Crossref ● PubMed ● Google Scholar | ||||
| ||||
7. Davies P.J. The Plant Hormones: Their Nature, Occurrence, and Functions. In: Davies P.J. (Ed.) Plant Hormones. Dordrecht: Springer, 2010. 1-15. Crossref ● PubMed ● Google Scholar | ||||
| ||||
8. Dempsey A.D., Klessig D.F. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? BMC Biology, 2017; 15: 23. Crossref ● PubMed ● Google Scholar | ||||
| ||||
9. Dobrev P., Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. Journal of Chromatography A, 2002; 950: 21-29. Crossref ● Google Scholar | ||||
| ||||
10. Dobrev P., Motyka V., Gaudinová A., Malbeck J., Trávníčková A., Kamínek M., Vaňková R. Transient accumulation of cis- and trans-zeatin type cytokinins and its relation to cytokinin oxidase activity during cell cycle of synchronized tobacco BY-2 cells. Plant Physiology and Biochemistry, 2002; 40(4): 333-337. Crossref ● Google Scholar | ||||
| ||||
11. Dobrev P.I., Vankova R. "Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues". In: Shabala S., Cuin T. (Ed.) Plant Salt Tolerance (Methods and Protocols). Totowa, NJ: Humana Press, 2012: 251-261. Crossref ● PubMed ● Google Scholar | ||||
| ||||
12. Dörfling K. Das Hormonsystem der Pflanzen. Stuttgart, New York: Georg Thieme Verlag, 1983. 236 s. | ||||
| ||||
13. Dun E.A., Brewer P.B., Beveridge C.A. Strigolactones: discovery of the elusive shoot branching hormone. Trends in Plant Science, 2009; 14(7): 364-372. Crossref ● PubMed ● Google Scholar | ||||
| ||||
14. Gantait S., Sinniah U.R., Ali N., Sahu N.C. Gibberellins a multifaceted hormone in plant growth regulatory network. Current Protein & Peptide Science, 2015; 16(5): 406-412. Crossref ● PubMed ● Google Scholar | ||||
| ||||
15. Guidelines for the determination of phytohormones (Metodicheskie rekomendatsii po opredeleniyu fitogormonov). Kiev: Naukova Dumka, 1988. 78 p. (In Russian) | ||||
| ||||
16. Gupta R., Chakrabarty S. Gibberellic acid in plant. Still a mystery unresolved. Plant Signaling & Behavior, 2013; 8(9): e25504. Crossref ● PubMed ● Google Scholar | ||||
| ||||
17. Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L-SP. Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends in Plant Science, 2012; 17(3): 172-179. Crossref ● PubMed ● Google Scholar | ||||
| ||||
18. Hirose N., Takei K., Kuroha T. Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentation and translocation. Journal of Experimental Botany, 2008; 59(1): 75-83. Crossref ● PubMed ● Google Scholar | ||||
| ||||
19. Kojima M., Kamada-Nobusada T., Komatsu H., Takei K., Kuroha T., Mizutani M., Ashikari M., Ueguchi-Tanaka M., Matsuoka M., Suzuki K., Sakakibara H. Highly sensitive and high-throuput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiology, 2009; 50(7): 1201-1214. Crossref ● PubMed ● Google Scholar | ||||
| ||||
20. Kulaeva O.N., Prokoptseva O.S. Recent Advances in the Study of Mechanisms of Action of Phytohormones. Biochemistry, 2004; 69: 233-247. Crossref ● PubMed ● Google Scholar | ||||
| ||||
21. Mertens R., Deusneumann B., Weiler E.W. Monoclonal-antibodies for the detection and quantitation of the endogenous plant-growth regulator, abscisic acid. FEBS Letters, 1983; 160(1-2): 269-272. Crossref ● Google Scholar | ||||
| ||||
22. Miller C.O., Skoog F., Von Saltza M.H. Strong F.M. Kinetin, a cell division factor from deoxyribonucleic acid. Journal of American Chemical Society, 1955; 77(5): 1392-1392. Crossref ● Google Scholar | ||||
| ||||
23. Müller A., Duchting P., Weiler E.W. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta, 2002; 216(1): 44-56. Crossref ● PubMed ● Google Scholar | ||||
| ||||
24. Müller M., Munné-Bosch S. Rapid and Sensitive Hormonal Profiling of Complex Plant Samples by Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry. Plant Methods, 2011; 7(1): 37. Crossref ● PubMed ● Google Scholar | ||||
| ||||
25. Nawrath C., Métraux J.P. Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. The Plant Cell, 1999; 11(8): 1393-1404. Crossref ● PubMed ● Google Scholar | ||||
| ||||
26. Pan X., Welti R., Wang X. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography tandem mass spectrometry. Phytochemistry, 2008; 69(8):1773-1781. Crossref ● PubMed ● Google Scholar | ||||
| ||||
27. Pan X., Wang X. Profiling of plant hormones by mass spectrometry. Journal of Chromatography B, 2009; 877(26): 2806-2813. Crossref ● PubMed ● Google Scholar | ||||
| ||||
28. Raskin I., Skubatz H., Tang W., Meeuse B.J.D. Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 1990; 66(4): 369-373. Crossref ● Google Scholar | ||||
| ||||
29. Rivas-San Vicente M., Plasencia J. Salicylic Acid beyond Defence: Its Role in Plant Growth and Development. Journal of Experimental Botany, 2011; 62(10): 3321-3338. Crossref ● PubMed ● Google Scholar | ||||
| ||||
30. Skoog F., Strong F.M., Miller C.O. Cytokinins. Science, 1965. 148: 532-533. Crossref ● PubMed ● Google Scholar | ||||
| ||||
31. Vasyuk V.A., Lichnevskiy R.V., Kosakivska I.V. Gibberellin-like substances in ontogenesis of the water fern Salvinia natans (Salviniaceae). Ukrainian Botanical Journal, 2016; 73(5): 503-509. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
32. Werner T., Schmülling T. Cytokinin action in plant development. Current Opinion in Plant Biology, 2009; 12(5): 527-538. Crossref ● PubMed ● Google Scholar | ||||
| ||||
33. Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 2001; 414: 562-565. Crossref ● PubMed ● Google Scholar | ||||
| ||||
34. Woodward A.W., Bartel B. Auxin: regulation, action, and interaction. Annals of Botany, 2005; 95(5): 707-735. Crossref ● PubMed ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.