AQUATIC MACROPHYTES: ECOLOGICAL FEATURES AND FUNCTIONS
DOI: http://dx.doi.org/10.30970/sbi.1402.619
Abstract
The article is devoted to the analysis of current data on the ecological features and functions of the aquatic macrophytes which are important components of aquatic and wetland ecosystems across the globe. Macrophytes comprise a taxonomically diverse group of macroscopic plants including representatives of vascular aquatic plants, bryophytes, as well as green macroalgae and charophytes. An assemblage of macrophytic vegetation consists of emergent species whose vegetative parts emerge above the water surface, submerged and floating species, with each ecological group having specific features in morphology and physiological processes. A wide range of the adaptive mechanisms developed by aquatic macrophytes at the morphological, physiological, and biochemical levels enables them to inhabit various types of freshwater, brackish-water, and marine habitats. Macrophytes are an important component of aquatic food webs and perform a host of ecological functions in water ecosystems. The main ones are synthesis and storage of organic compounds and oxygen release, absorption and accumulation of chemical elements, water filtration and detoxification of pollutants, release of biologically active compounds involved in interspecies communications, provision of food, shelter and feeding places for aquatic animals, impact on the hydrological regime of water bodies, etc. A wide array of macrophyte species aresed in various human activities, including bioindication of water quality, phytoremediation of contaminated water bodies and wastewater treatment. However, human activities leading to surface water pollution, eutrophication and global warming have led to a concomitant decrease in macrophyte diversity in many freshwater ecosystems and in marine environment. Therefore, proper management of aquatic and wetland ecosystems, including their monitoring and control, is a prerequisite for a successful conservation of habitats and species richness of the aquatic macrophytes.
Full Text:
PDFReferences
1. Afzal M., Rehman K., Shabir G., Tahseen R., Ijaz A., Hashmat A.J., Brix H. Large-scale remediation of oil-contaminated water using floating treatment wetlands. npj Clean Water, 2019; 2: 3. Crossref | ||||
| ||||
2. Akasaka M., Takamura N., Mitsuhashi H., Kadono Y. Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshwater Biology, 2010; 55: 909-922. Crossref | ||||
| ||||
3. Andersen T., Pedersen O. Interactions between light and CO2 enhance the growth of Riccia fluitans. Hydrobiologia, 2002; 477: 163-170. Crossref | ||||
| ||||
4. Antonyak H.L., Bagday T.V., Pershyn O.I., Bubys O.E., Panas N.E., Oleksyuk N.P. Metals in aquatic ecosystems and their influence on hydrobionts. Animal Biology, 2015; 17(2): 9-24. (In Ukrainian) | ||||
| ||||
5. Arber A. Water plants. A study of aquatic angiosperms. Cambridge: University Press,1920, 460 p. Crossef | ||||
| ||||
6. Bakker E.S., Wood K.A., Pages J.F., Veen G.F., Christianen M.J.A., Santamaria L., Nolet B.A., Hilt S. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany, 2016; 135: 18-36. Crossref | ||||
| ||||
7. Barko J.W., Adams M.S., Clesceri N.L. Environmental factors and their consideration in the management of submerged aquatic vegetation: a review. Journal of Aquatic Plant Management, 1986; 24: 1-10. | ||||
| ||||
8. Bes M., Corbera J., Sayol F., Bagaria G., Jover M., Preece C., Viza A., Sabater F., Fernández-Martínez M. On the influence of water conductivity, pH and climate on bryophyte assemblages in Catalan semi-natural springs. Journal of Bryology, 2018; 40(2). Crossref | ||||
| ||||
9. Białowiec A., Sobieraj K., Pilarski G., Manczarski P. The oxygen transfer capacity of submerged plant Elodea densa in wastewater constructed wetlands. Water, 2019; 11(3): 575. Crossref | ||||
| ||||
10. Bitušík P., Svitok M., Novikmec M., Trnková K., Hamerlík L. A unique way of passive dispersal of aquatic invertebrates by wind: Chironomid larvae are traveling in fragments of aquatic mosses. Limnologica, 2017; 63: 119-121. Crossref | ||||
| ||||
11. Boedeltje G., Klutman B., Schaap M., Sollman P., de Vos M., Lenssen J.P.M., Verberk W.C.E.P. Plant dispersal in a temperate stream by fish species with contrasting feeding habits: the role of plant traits, fish diet, season, and propagule availability. Frontiers in Ecology and Evolution, 2019; 7: 54. Crossref ● Google Scholar | ||||
| ||||
12. Boedeltje G., Sollman P., Lenssen J.P.M. Floating ability, shoot length and abundance facilitate hydrochorous dispersal of moss and liverwort fragments. Journal of Vegetation Science, 2019; 30(1): 30-41. Crossref ● Google Scholar | ||||
| ||||
13. Bornette G., Puijalon S. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 2011; 73: 1-14. Crossref ● Google Scholar | ||||
| ||||
14. Borowiak K., Kanclerz J., Mleczek M., Lisiak M., Drzewiecka K. Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustiifola) of freshwater ecosystem. Archives of Environmental Protection, 2016; 42(3): 47-57. Crossref● Google Scholar | ||||
| ||||
15. Brönmark C., Hansson L.A. The Biology of Lakes and Ponds. 3rd ed. Oxford: Oxford University Press, 2017. 368 p. Crossref ● Google Scholar | ||||
| ||||
16. Bubys O.E., Antonyak H.L. Effects of cadmium, lead and chromium (VI) on the activities of enzymes of antioxidant system in the cells of duckweed (Lemna minor L.). Visnyk of the Lviv University. Series Biology, 2014; 65: 161-169. (In Ukrainian) Google Scholar | ||||
| ||||
17. Chambers P.A., Lacoul P., Murphy K.J., Thomaz S.M. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 2008; 198: 9-26. Crossref ● Google Scholar | ||||
| ||||
18. Chen J., Zhang H., Han Z., Ye J., Liu Z. The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecological Engineering, 2012; 42: 130-133. Crossref ● Google Scholar | ||||
| ||||
19. Cook C.D.K. The number and kinds of embryobearing plants which have become aquatic: a survey. Perspectives in Plant Ecology, Evolution and Systematics, 1999; 2(1): 79-102. Crossref ● Google Scholar | ||||
| ||||
20. Coughlan N.E., Cuthbert R.N., Kelly T.V., Jansen M.A.K. Parched plants: survival and viability of invasive aquatic macrophytes following exposure to various desiccation regimes. Aquatic Botany, 2018; 150: 9-15. Crossref ● Google Scholar | ||||
| ||||
21. Davidson N.C., D'Cruz R., Finlayson C.M. Ecosystems and Human Well-being: Wetlands and Water Synthesis: a report of the Millennium Ecosystem Assessment. Washington, DC: World Resources Institute, 2005. 68 p. | ||||
| ||||
22. de Nie H.W. The decrease in aquatic vegetation in Europe and its consequences for fish populations. Rome: FAO, 1987. Available online: http://www.fao.org/3/ac858e/AC858E00.htm | ||||
| ||||
23. Dhote S., Dixit S. Water quality improvement through macrophytes - a review. Environmental Monitoring and Assessment, 2009; 152: 149-153. Crossref ● PubMed ● Google Scholar | ||||
| ||||
24. Du Z.Y., Wang Q.F., China Phylogeny Consortium. Phylogenetic tree of vascular plants reveals the origins of aquatic angiosperms. Journal of Systematics and Evolution, 2016; 54(4): 342-348. Crossref ● Google Scholar | ||||
| ||||
25. Dubyna D.V., Dziuba T.P., Dvoretzkiy T.V., Zolotariova O.K., Taran N.Yu., Mosyakin A.S., Iemelianova S.M., Kazarinova G.O. Invasive aquatic macrophytes of Ukraine. Ukrainian Botanical Journal, 2017; 74(3): 248-262. (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
26 European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Union, 2000; 327: 1-72. Google Scholar | ||||
| ||||
27. Fink P. Ecological functions of volatile organic compounds in aquatic systems. Marine and Freshwater Behaviour and Physiology, 2007; 40(3): 155-168. Crossref ● Google Scholar | ||||
| ||||
28. Gimenes L.L.S., Freschi G.P.G., Bianchini Júnior I., Cunha Santino M.B.D. Growth of the aquatic macrophyte Ricciocarpos natans (L.) Corda in different temperatures and in distinct concentrations of aluminum and manganese. Aquatic Toxicology, 2020; 224: 105484. Crossref ● PubMed | ||||
| ||||
29. Gradstein R., Vanderpoorten A., Reenen G. van, Cleef A. Mass occurrence of the liverwort Herbertus sendtneri in a glacial lake in the Andes of Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2018; 42: 221-229. Crossref ● Google Scholar | ||||
| ||||
30. Gross E.M., Groffier H., Pestelard C., Hussner A. Ecology and Environmental Impact of Myriophyllum heterophyllum, an Aggressive Invader in European Waterways. Diversity, 2020; 12(4): 127. Crossref ● Google Scholar | ||||
| ||||
31. Hossain K., Yadav S., Quaik S., Pant G., Maruthi A.Y., Ismail N. Vulnerabilities of macrophytes distribution due to climate change. Theoretical and Applied Climatology, 2017; 129: 1123-1132. Crossref ● Google Scholar | ||||
| ||||
32. Hrivnák R., Oťaheľová H., Jarolímek I. Diversity of aquatic macrophytes in relation to environmental factors in the Slatina river (Slovakia). Biologia, Bratislava, 2006; 61(4): 413-419. Crossref ● Google Scholar | ||||
| ||||
33. Hupfer M., Hilt S. Lake Restoration. In: Encyclopedia of Ecology, 2008. Crossref ● Google Scholar | ||||
| ||||
34. Hyndes G.A., Francour P., Guidetti P., Heck K.L. Jr., Jenkins G. The roles of seagrasses in structuring associated fish assemblages and fisheries. In: Seagrasses of Australia. (Larkum A.W.D. et al., eds.). Springer International Publishing AG, 2018. P. 589-627. Crossref ● Google Scholar | ||||
| ||||
35. Jackson M.B., Ishizawa K., Ito O. Evolution and mechanisms of plant tolerance to flooding stress. Annals of Botany, 2009; 103: 137-142. Crossref ● PubMed | ||||
| ||||
36. Khan S., Nawab J., Waqas M. Constructed wetlands: a clean-green technology for degradation and detoxification of industrial wastewaters. In: Bioremediation of Industrial Waste for Environmental Safety. Vol. II: Biological Agents and Methods for Industrial Waste Management. (Bharagava R.N., Saxena G., eds.). Springer Singapore, 2020: 127-163. Crossref ● Google Scholar | ||||
| ||||
37. Kozlowski G., Stoffel M., Bétrisey S., Cardinaux L., Mota M. Hydrophobia of gymnosperms: myth or reality? A global analysis. Ecohydrology, 2015; 8: 105-112. Crossref ● Google Scholar | ||||
| ||||
38. Kumar V., Kumar P., Singh J., Kumar P. Potential of water fern (Azolla pinnata R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. International Journal of Phytoremediation, 2020; 22(4): 392-403. Crossref ● PubMed ● Google Scholar | ||||
| ||||
39. Li F.M., Hu H.Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Applied and Environmental Microbiology, 2005; 71(11): 6545-6553. Crossref ● PubMed | ||||
| ||||
40. Li G., Hu S., Hou H., Kimura S. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants. Plants, 2019; 8: 420. Crossref ● PubMed ● Google Scholar | ||||
| ||||
41. Lodge D.M. Herbivory on freshwater macrophytes. Aquatic Botany, 1991; 41(1-3): 195-224. Crossref ● Google Scholar | ||||
| ||||
42. Maberly S.C., Madsen T.V. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Functional Plant Biology, 2002; 29: 393-405. Crossref ● Google Scholar | ||||
| ||||
43. Madsen J.D., Chambers P.A., James W.F., Koch E.W., Westlake D.F. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 2001; 444: 71-84. Crossref ● Google Scholar | ||||
| ||||
44. Mähnert B., Schagerl M., Krenn L. Allelopathic potential of stoneworts. Fottea, Olomouc, 2017; 17(2): 137-149. Crossref ● Google Scholar | ||||
| ||||
45. Miler O., Albayrak I., Nikora V., O'Hare M. Biomechanical properties and morphological characteristics of lake and river plants: implications for adaptations to flow conditions. Aquatic Sciences, 2014; 76(4): 465-481. Crossref ● Google Scholar | ||||
| ||||
46. Mironova N.G. Technogenic lakes of Small Polissya. Khmelnytskyi, 2014. 260 p. (In Ukrainian) | ||||
| ||||
47. Mommer L., Pons T.L., Wolters-Arts M., Venema J.H., Visser E.J.W. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiology, 2005; 139(1): 497-508. Crossref ● PubMed ● Google Scholar | ||||
| ||||
48. Nakayama H., Sinha N.R., Kimura S. How do plants and phytohormones accomplish heterophylly, leaf phenotypic plasticity, in response to environmental cues. Frontiers in Plant Science, 2017; 8: 1717. Crossref ● PubMed ● Google Scholar | ||||
| ||||
49. O'Hare M.T., Baattrup-Pedersen A., Baumgarte I., Freeman A., Gunn I.D.M., Lázár A.N., Sinclair R., Wade A.J., Bowes M.J. Responses of aquatic plants to eutrophication in rivers: a revised conceptual model. Frontiers in Plant Science, 2018; 9: 451. Crossref ● PubMed ● Google Scholar | ||||
| ||||
50. Opuszynski K., Shireman J.V. Herbivorous fishes: culture and use for weed management. In cooperation with James E. Weaver, Director of the United States Fish and Wildlife Service's National Fisheries Research Center. CRC Press, Boca Raton, 1995. | ||||
| ||||
51. Orth R.J., Carruthers T.J.B., Dennison W.C., Duarte C.M., Fourqurean J.W., Heck K.L., Hughes A.R., Kendrick G.A., Kenworthy W.J., Olyarnik S., Short F.T., Waycott M., Williams S.L. A global crisis for seagrass ecosystems. BioScience, 2006; 56(12): 987-996. Crossref ● Google Scholar | ||||
| ||||
52. Pedro F., Maltchik L., Bianchini I. Hydrologic cycle and dynamics of aquatic macrophytes in two intermittent rivers of the semi-arid region of Brazil. Brazilian Journal of Biology, 2006; 66(2B): 575-585. Crossref ● PubMed ● Google Scholar | ||||
| ||||
53. Perata P., Alpi A. Plant responses to anaerobiosis. Plant Science, 1993; 93: 1-17. Crossref ● Google Scholar | ||||
| ||||
54. Petr T. Food and Agriculture Organization of the United Nations. Interactions between fish and aquatic macrophytes in inland waters. Food & Agriculture Org., 2000. 185 p. Google Scholar | ||||
| ||||
55. Pyšek P., Skálová H., Čuda J., Guo W.Y., Doležal J., Kauzál O., Lambertini C., Pyšková K., Brix H., Meyerson L.A. Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia, 2019; 91: 51-75. Crossref ● Google Scholar | ||||
| ||||
56. Rejmánková E. The role of macrophytes in wetland ecosystems. Journal of Ecology and Field Biology, 2011; 34(4): 333-345. Crossreef ● Google Scholar | ||||
| ||||
57. Reinhold D.M. Fate of fluorinated organic pollutants in aquatic plant systems: studies with Lemnaceae and Lemnaceae tissue cultures. ProQuest, 2007. 267 р. Google Scholar | ||||
| ||||
58. Roshchyna N.O. Modern condition and analysis of anthropogenous-climatic transformation of vegetation of lakes of the northern Steppe land. Ecology and Noospherology, 2018; 29(2): 142-148. Crossref ● Google Scholar | ||||
| ||||
59. Sabovljević M., Sabovljević A. Contribution to the coastal bryophytes of the Northern Mediterranean: Are there halophytes among bryophytes? Phytologia Balcanica, 2007; 13(2): 131-135. Google Scholar | ||||
| ||||
60. Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica, 2002; 23:137-154. Crossref ● Google Scholar | ||||
| ||||
61. Sculthorpe C.D. The biology of aquatic vascular plants. London: Edward Arnold, 1967. 610 p. Google Scholar | ||||
| ||||
62. Segarra-Moragues J.G., Puche F., Sabovljević M. Riella heliospora (Riellaceae) a new monoicous species of Riella subgenus Trabutiella from California. Systematic Botany, 2012; 37(2): 307-319. Crossref ● Google Scholar | ||||
| ||||
63. Shevock J.R., Ma W.Z., Akiyama H. Diversity of the rheophytic condition in bryophytes: field observations from multiple continents. Bryophyte Diversity and Evolution, 2017; 39(1): 075-093. Crossref ● Google Scholar | ||||
| ||||
64. Sood A., Uniyal P.L., Prasanna R., Ahluwalia A.S. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 2012; 41(2): 122-137. Crossref ● PubMed ● Google Scholar | ||||
| ||||
65. Sossey-Alaoui K., Rosillon F. Macrophytic distribution and trophic state of some natural and impacted watercourses - Belgium Wallonia. International Journal of Water, 2013; 2(3): 2013. Crossref ● Google Scholar | ||||
| ||||
66. Srivastava J., Gupta A., Chandra H. Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Biotechnology, 2008; 7: 255-266. Crossref ● Google Scholar | ||||
| ||||
67. Stefanidis K., Papastergiadou E. Linkages between macrophyte functional traits and water quality: insights from a study in freshwater lakes of Greece. Water, 2019; 11: 1047. Crossref ● Google Scholar | ||||
| ||||
68. Szoszkiewicz K., Jusik S., Pietruczuk K., Gebler D. The macrophyte index for rivers (MIR) as an advantageous approach to running water assessment in local geographical conditions. Water, 2020; 12: 108. Crossref ● Google Scholar | ||||
| ||||
69. Takahashi H., Yamauchi T., Colmer T.D., Nakazono M. Aerenchyma formation in plants. In: Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia. (van Dongen J.T., Licausi F., eds.). Wien: Springer-Verlag, 2014: 247-265. Crossref ● Google Scholar | ||||
| ||||
70. Tang Y., Harpenslager S.F., van Kempen M.M.L., Verbaarschot E.J.H., Loeffen L.M.J.M., Roelofs J.G.M., Smolders A.J.P., Lamers L.P.M. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands. Biogeosciences, 2017; 14: 755-766. Crossref ● Google Scholar | ||||
| ||||
71. Thomaz S.M., da Cunha E.R. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia, 2010; 22(2): 218-236. Crossref ● Google Scholar | ||||
| ||||
72. van der Loos L., Bennema F. Marine plants and algae. In: Field Guide to the Marine Life of St. Eustatius. (Schrieken N., van Leeuwen S., eds.). The ANEMOON Foundation, 2016: 62-65. | ||||
| ||||
73. van Leeuwen C.H.A. Internal and external dispersal of plants by animals: an aquatic perspective on alien interference. Frontiers in Plant Science, 2018; 9: 153. Crossref ● PubMed ● Google Scholar | ||||
| ||||
74. van Veen H, Sasidharan R. Shape shifting by amphibious plants in dynamic hydrological niches. New Phytologist, 2019. Crossref ● PubMed ● Google Scholar | ||||
| ||||
75. Vanderpoorten A. Aquatic bryophytes for a spatio-temporal monitoring of the water pollution of the rivers Meuse and Sambre (Belgium). Environmental Pollution, 1999; 104: 401-410. Crossref ● Google Scholar | ||||
| ||||
76. Vymazal J. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 2013; 61: 582-592. Crossref ● Google Scholar | ||||
| ||||
77. Wagner B., Seppelt R. Deep-water occurrence of the moss Bryum pseudotriquetrum in Radok Lake, Amery Oasis, East Antarctica. Polar Biology, 2006; 29: 791-795. Crossref ● Google Scholar | ||||
| ||||
78. Wetzel R.G. Limnology: Lake and River Ecosystems. 3rd Edn. Academic Press, San Diego, California, 2001. 1006 p. Crossref ● Google Scholar | ||||
| ||||
79. Winton M.D. de, Beever J.E. Deep-water bryophyte records from New Zealand lakes. New Zealand Journal of Marine and Freshwater Research, 2004; 38: 329-340. Crossref ● Google Scholar | ||||
| ||||
80. Zhang M., Molinos J.G., Su G., Zhang H., Xu J. Spatially structured environmental variation plays a prominent role on the biodiversity of freshwater macrophytes across China. Frontiers in Plant Science, 2019; 10: 161.
81. Zhang Y., Jeppesen E., Liu X., Qin B., Shi K., Zhou Y., Thomaz S.M., Deng J. Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 2017; 173: 259–265.
82. Zuo Z. Why algae release volatile organic compounds – the emission and roles. Frontiers in Microbiology, 2019; 10: 491. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Studia Biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.