AQUATIC MACROPHYTES: ECOLOGICAL FEATURES AND FUNCTIONS

M. S. Lesiv, A. I. Polishchuk, H. L. Antonyak


DOI: http://dx.doi.org/10.30970/sbi.1402.619

Abstract


The article is devoted to the analysis of current data on the ecological features and functions of the aquatic macrophytes which are important components of aquatic and wetland ecosystems across the globe. Macrophytes comprise a taxonomically diverse group of macroscopic plants including representatives of vascular aquatic plants, bryophytes, as well as green macroalgae and charophytes. An assemblage of macrophytic vegetation consists of emergent species whose vegetative parts emerge above the water surface, submerged and floating species, with each ecological group having specific features in morphology and physiological processes. A wide range of the adaptive mechanisms developed by aquatic macrophytes at the morphological, physiological, and biochemical levels enables them to inhabit various types of freshwater, brackish-water, and marine habitats. Macrophytes are an important component of aquatic food webs and perform a host of ecological functions in water ecosystems. The main ones are synthesis and storage of organic compounds and oxygen release, absorption and accumulation of chemical elements, water filtration and detoxification of pollutants, release of biologically active compounds involved in interspecies communications, provision of food, shelter and feeding places for aquatic animals, impact on the hydrological regime of water bodies, etc. A wide array of macrophyte species aresed in various human activities, including bioindication of water quality, phytoremediation of contaminated water bodies and wastewater treatment. However, human activities leading to surface water pollution, eutrophication and global warming have led to a concomitant decrease in macrophyte diversity in many freshwater ecosystems and in marine environment. Therefore, proper management of aquatic and wetland ecosystems, including their monitoring and control, is a prerequisite for a successful conservation of habitats and species richness of the aquatic macrophytes.

Keywords: aquatic macrophytes, bryophytes, hydrophytes, aquatic ecosystems, wetlands

Full Text:

PDF

References


1. Afzal M., Rehman K., Shabir G., Tahseen R., Ijaz A., Hashmat A.J., Brix H. Large-scale remedia­tion of oil-contaminated water using floating treatment wetlands. npj Clean Water, 2019; 2: 3.
Crossref

2. Akasaka M., Takamura N., Mitsuhashi H., Kadono Y. Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshwater Biology, 2010; 55: 909-922.
Crossref

3. Andersen T., Pedersen O. Interactions between light and CO2 enhance the growth of Riccia flui­tans. Hydrobiologia, 2002; 477: 163-170.
Crossref

4. Antonyak H.L., Bagday T.V., Pershyn O.I., Bubys O.E., Panas N.E., Oleksyuk N.P. Metals in aquatic ecosystems and their influence on hydrobionts. Animal Biology, 2015; 17(2): 9-24. (In Ukrainian)

5. Arber A. Water plants. A study of aquatic angiosperms. Cambridge: University Press,1920, 460 p.
Crossef

6. Bakker E.S., Wood K.A., Pages J.F., Veen G.F., Christianen M.J.A., Santamaria L., Nolet B.A., Hilt S. Herbivory on freshwater and marine macrophytes: a review and perspective. Aquatic Botany, 2016; 135: 18-36.
Crossref

7. Barko J.W., Adams M.S., Clesceri N.L. Environmental factors and their consideration in the management of submerged aquatic vegetation: a review. Journal of Aquatic Plant Management, 1986; 24: 1-10.

8. Bes M., Corbera J., Sayol F., Bagaria G., Jover M., Preece C., Viza A., Sabater F., Fernández-Martínez M. On the influence of water conductivity, pH and climate on bryophyte assemblages in Catalan semi-natural springs. Journal of Bryology, 2018; 40(2).
Crossref

9. Białowiec A., Sobieraj K., Pilarski G., Manczarski P. The oxygen transfer capacity of submerged plant Elodea densa in wastewater constructed wetlands. Water, 2019; 11(3): 575.
Crossref

10. Bitušík P., Svitok M., Novikmec M., Trnková K., Hamerlík L. A unique way of passive dispersal of aquatic invertebrates by wind: Chironomid larvae are traveling in fragments of aquatic mosses. Limnologica, 2017; 63: 119-121.
Crossref

11. Boedeltje G., Klutman B., Schaap M., Sollman P., de Vos M., Lenssen J.P.M., Verberk W.C.E.P. Plant dispersal in a temperate stream by fish species with contrasting feeding habits: the role of plant traits, fish diet, season, and propagule availability. Frontiers in Ecology and Evolution, 2019; 7: 54.
CrossrefGoogle Scholar

12. Boedeltje G., Sollman P., Lenssen J.P.M. Floating ability, shoot length and abundance facilitate hydrochorous dispersal of moss and liverwort fragments. Journal of Vegetation Science, 2019; 30(1): 30-41.
CrossrefGoogle Scholar

13. Bornette G., Puijalon S. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences, 2011; 73: 1-14.
CrossrefGoogle Scholar

14. Borowiak K., Kanclerz J., Mleczek M., Lisiak M., Drzewiecka K. Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustiifola) of freshwater ecosystem. Archives of Environmental Protection, 2016; 42(3): 47-57.
CrossrefGoogle Scholar

15. Brönmark C., Hansson L.A. The Biology of Lakes and Ponds. 3rd ed. Oxford: Oxford University Press, 2017. 368 p.
CrossrefGoogle Scholar

16. Bubys O.E., Antonyak H.L. Effects of cadmium, lead and chromium (VI) on the activities of enzymes of antioxidant system in the cells of duckweed (Lemna minor L.). Visnyk of the Lviv University. Series Biology, 2014; 65: 161-169. (In Ukrainian)
Google Scholar

17. Chambers P.A., Lacoul P., Murphy K.J., Thomaz S.M. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia, 2008; 198: 9-26.
CrossrefGoogle Scholar

18. Chen J., Zhang H., Han Z., Ye J., Liu Z. The influence of aquatic macrophytes on Microcystis aeruginosa growth. Ecological Engineering, 2012; 42: 130-133.
CrossrefGoogle Scholar

19. Cook C.D.K. The number and kinds of embryobearing plants which have become aquatic: a survey. Perspectives in Plant Ecology, Evolution and Systematics, 1999; 2(1): 79-102.
CrossrefGoogle Scholar

20. Coughlan N.E., Cuthbert R.N., Kelly T.V., Jansen M.A.K. Parched plants: survival and viability of invasive aquatic macrophytes following exposure to various desiccation regimes. Aquatic Botany, 2018; 150: 9-15.
CrossrefGoogle Scholar

21. Davidson N.C., D'Cruz R., Finlayson C.M. Ecosystems and Human Well-being: Wetlands and Water Synthesis: a report of the Millennium Ecosystem Assessment. Washington, DC: World Resources Institute, 2005. 68 p.

22. de Nie H.W. The decrease in aquatic vegetation in Europe and its consequences for fish populations. Rome: FAO, 1987.
Available online: http://www.fao.org/3/ac858e/AC858E00.htm

23. Dhote S., Dixit S. Water quality improvement through macrophytes - a review. Environmental Monitoring and Assessment, 2009; 152: 149-153.
CrossrefPubMedGoogle Scholar

24. Du Z.Y., Wang Q.F., China Phylogeny Consortium. Phylogenetic tree of vascular plants reveals the origins of aquatic angiosperms. Journal of Systematics and Evolution, 2016; 54(4): 342-348.
CrossrefGoogle Scholar

25. Dubyna D.V., Dziuba T.P., Dvoretzkiy T.V., Zolotariova O.K., Taran N.Yu., Mosyakin A.S., Iemelianova S.M., Kazarinova G.O. Invasive aquatic macrophytes of Ukraine. Ukrainian Botanical Journal, 2017; 74(3): 248-262. (In Ukrainian)
CrossrefGoogle Scholar

26 European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Union, 2000; 327: 1-72.
Google Scholar

27. Fink P. Ecological functions of volatile organic compounds in aquatic systems. Marine and Freshwater Behaviour and Physiology, 2007; 40(3): 155-168.
CrossrefGoogle Scholar

28. Gimenes L.L.S., Freschi G.P.G., Bianchini Júnior I., Cunha Santino M.B.D. Growth of the aquatic macrophyte Ricciocarpos natans (L.) Corda in different temperatures and in distinct concentrations of aluminum and manganese. Aquatic Toxicology, 2020; 224: 105484.
CrossrefPubMed

29. Gradstein R., Vanderpoorten A., Reenen G. van, Cleef A. Mass occurrence of the liverwort Herbertus sendtneri in a glacial lake in the Andes of Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 2018; 42: 221-229.
CrossrefGoogle Scholar

30. Gross E.M., Groffier H., Pestelard C., Hussner A. Ecology and Environmental Impact of Myrio­phyllum heterophyllum, an Aggressive Invader in European Waterways. Diversity, 2020; 12(4): 127.
CrossrefGoogle Scholar

31. Hossain K., Yadav S., Quaik S., Pant G., Maruthi A.Y., Ismail N. Vulnerabilities of macrophytes distribution due to climate change. Theoretical and Applied Climatology, 2017; 129: 1123-1132.
CrossrefGoogle Scholar

32. Hrivnák R., Oťaheľová H., Jarolímek I. Diversity of aquatic macrophytes in relation to environmental factors in the Slatina river (Slovakia). Biologia, Bratislava, 2006; 61(4): 413-419.
CrossrefGoogle Scholar

33. Hupfer M., Hilt S. Lake Restoration. In: Encyclopedia of Ecology, 2008.
CrossrefGoogle Scholar

34. Hyndes G.A., Francour P., Guidetti P., Heck K.L. Jr., Jenkins G. The roles of seagrasses in structuring associated fish assemblages and fisheries. In: Seagrasses of Australia. (Larkum A.W.D. et al., eds.). Springer International Publishing AG, 2018. P. 589-627.
CrossrefGoogle Scholar

35. Jackson M.B., Ishizawa K., Ito O. Evolution and mechanisms of plant tolerance to flooding stress. Annals of Botany, 2009; 103: 137-142.
CrossrefPubMed

36. Khan S., Nawab J., Waqas M. Constructed wetlands: a clean-green technology for degradation and detoxification of industrial wastewaters. In: Bioremediation of Industrial Waste for Environmental Safety. Vol. II: Biological Agents and Methods for Industrial Waste Management. (Bharagava R.N., Saxena G., eds.). Springer Singapore, 2020: 127-163.
CrossrefGoogle Scholar

37. Kozlowski G., Stoffel M., Bétrisey S., Cardinaux L., Mota M. Hydrophobia of gymnosperms: myth or reality? A global analysis. Ecohydrology, 2015; 8: 105-112.
CrossrefGoogle Scholar

38. Kumar V., Kumar P., Singh J., Kumar P. Potential of water fern (Azolla pinnata R.Br.) in phytoremediation of integrated industrial effluent of SIIDCUL, Haridwar, India: removal of physicochemical and heavy metal pollutants. International Journal of Phytoremediation, 2020; 22(4): 392-403.
CrossrefPubMedGoogle Scholar

39. Li F.M., Hu H.Y. Isolation and characterization of a novel antialgal allelochemical from Phragmites communis. Applied and Environmental Microbiology, 2005; 71(11): 6545-6553.
CrossrefPubMed

40. Li G., Hu S., Hou H., Kimura S. Heterophylly: phenotypic plasticity of leaf shape in aquatic and amphibious plants. Plants, 2019; 8: 420.
CrossrefPubMedGoogle Scholar

41. Lodge D.M. Herbivory on freshwater macrophytes. Aquatic Botany, 1991; 41(1-3): 195-224.
CrossrefGoogle Scholar

42. Maberly S.C., Madsen T.V. Freshwater angiosperm carbon concentrating mechanisms: processes and patterns. Functional Plant Biology, 2002; 29: 393-405.
CrossrefGoogle Scholar

43. Madsen J.D., Chambers P.A., James W.F., Koch E.W., Westlake D.F. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 2001; 444: 71-84.
CrossrefGoogle Scholar

44. Mähnert B., Schagerl M., Krenn L. Allelopathic potential of stoneworts. Fottea, Olomouc, 2017; 17(2): 137-149.
CrossrefGoogle Scholar

45. Miler O., Albayrak I., Nikora V., O'Hare M. Biomechanical properties and morphological characteristics of lake and river plants: implications for adaptations to flow conditions. Aquatic Sciences, 2014; 76(4): 465-481.
CrossrefGoogle Scholar

46. Mironova N.G. Technogenic lakes of Small Polissya. Khmelnytskyi, 2014. 260 p. (In Ukrainian)

47. Mommer L., Pons T.L., Wolters-Arts M., Venema J.H., Visser E.J.W. Submergence-induced morphological, anatomical, and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiology, 2005; 139(1): 497-508.
CrossrefPubMedGoogle Scholar

48. Nakayama H., Sinha N.R., Kimura S. How do plants and phytohormones accomplish hete­rophylly, leaf phenotypic plasticity, in response to environmental cues. Frontiers in Plant Science, 2017; 8: 1717.
CrossrefPubMedGoogle Scholar

49. O'Hare M.T., Baattrup-Pedersen A., Baumgarte I., Freeman A., Gunn I.D.M., Lázár A.N., Sinclair R., Wade A.J., Bowes M.J. Responses of aquatic plants to eutrophication in rivers: a revised conceptual model. Frontiers in Plant Science, 2018; 9: 451.
CrossrefPubMedGoogle Scholar

50. Opuszynski K., Shireman J.V. Herbivorous fishes: culture and use for weed management. In cooperation with James E. Weaver, Director of the United States Fish and Wildlife Service's National Fisheries Research Center. CRC Press, Boca Raton, 1995.

51. Orth R.J., Carruthers T.J.B., Dennison W.C., Duarte C.M., Fourqurean J.W., Heck K.L., Hughes A.R., Kendrick G.A., Kenworthy W.J., Olyarnik S., Short F.T., Waycott M., Williams S.L. A global crisis for seagrass ecosystems. BioScience, 2006; 56(12): 987-996.
CrossrefGoogle Scholar

52. Pedro F., Maltchik L., Bianchini I. Hydrologic cycle and dynamics of aquatic macrophytes in two intermittent rivers of the semi-arid region of Brazil. Brazilian Journal of Biology, 2006; 66(2B): 575-585.
CrossrefPubMedGoogle Scholar

53. Perata P., Alpi A. Plant responses to anaerobiosis. Plant Science, 1993; 93: 1-17.
CrossrefGoogle Scholar

54. Petr T. Food and Agriculture Organization of the United Nations. Interactions between fish and aquatic macrophytes in inland waters. Food & Agriculture Org., 2000. 185 p.
Google Scholar

55. Pyšek P., Skálová H., Čuda J., Guo W.Y., Doležal J., Kauzál O., Lambertini C., Pyšková K., Brix H., Meyerson L.A. Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia, 2019; 91: 51-75.
CrossrefGoogle Scholar

56. Rejmánková E. The role of macrophytes in wetland ecosystems. Journal of Ecology and Field Biology, 2011; 34(4): 333-345.
CrossreefGoogle Scholar

57. Reinhold D.M. Fate of fluorinated organic pollutants in aquatic plant systems: studies with Lemnaceae and Lemnaceae tissue cultures. ProQuest, 2007. 267 р.
Google Scholar

58. Roshchyna N.O. Modern condition and analysis of anthropogenous-climatic transformation of vegetation of lakes of the northern Steppe land. Ecology and Noospherology, 2018; 29(2): 142-148.
CrossrefGoogle Scholar

59. Sabovljević M., Sabovljević A. Contribution to the coastal bryophytes of the Northern Mediterranean: Are there halophytes among bryophytes? Phytologia Balcanica, 2007; 13(2): 131-135.
Google Scholar

60. Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica, 2002; 23:137-154.
CrossrefGoogle Scholar

61. Sculthorpe C.D. The biology of aquatic vascular plants. London: Edward Arnold, 1967. 610 p.
Google Scholar

62. Segarra-Moragues J.G., Puche F., Sabovljević M. Riella heliospora (Riellaceae) a new monoicous species of Riella subgenus Trabutiella from California. Systematic Botany, 2012; 37(2): 307-319.
CrossrefGoogle Scholar

63. Shevock J.R., Ma W.Z., Akiyama H. Diversity of the rheophytic condition in bryophytes: field observations from multiple continents. Bryophyte Diversity and Evolution, 2017; 39(1): 075-093.
CrossrefGoogle Scholar

64. Sood A., Uniyal P.L., Prasanna R., Ahluwalia A.S. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 2012; 41(2): 122-137.
CrossrefPubMedGoogle Scholar

65. Sossey-Alaoui K., Rosillon F. Macrophytic distribution and trophic state of some natural and impacted watercourses - Belgium Wallonia. International Journal of Water, 2013; 2(3): 2013.
CrossrefGoogle Scholar

66. Srivastava J., Gupta A., Chandra H. Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Biotechnology, 2008; 7: 255-266.
CrossrefGoogle Scholar

67. Stefanidis K., Papastergiadou E. Linkages between macrophyte functional traits and water quality: insights from a study in freshwater lakes of Greece. Water, 2019; 11: 1047.
CrossrefGoogle Scholar

68. Szoszkiewicz K., Jusik S., Pietruczuk K., Gebler D. The macrophyte index for rivers (MIR) as an advantageous approach to running water assessment in local geographical conditions. Water, 2020; 12: 108.
CrossrefGoogle Scholar

69. Takahashi H., Yamauchi T., Colmer T.D., Nakazono M. Aerenchyma formation in plants. In: Low-Oxygen Stress in Plants: Oxygen Sensing and Adaptive Responses to Hypoxia. (van Dongen J.T., Licausi F., eds.). Wien: Springer-Verlag, 2014: 247-265.
Crossref Google Scholar

70. Tang Y., Harpenslager S.F., van Kempen M.M.L., Verbaarschot E.J.H., Loeffen L.M.J.M., Roelofs J.G.M., Smolders A.J.P., Lamers L.P.M. Aquatic macrophytes can be used for wastewater polishing but not for purification in constructed wetlands. Biogeosciences, 2017; 14: 755-766.
Crossref Google Scholar

71. Thomaz S.M., da Cunha E.R. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages' composition and biodiversity. Acta Limnologica Brasiliensia, 2010; 22(2): 218-236.
CrossrefGoogle Scholar

72. van der Loos L., Bennema F. Marine plants and algae. In: Field Guide to the Marine Life of St. Eustatius. (Schrieken N., van Leeuwen S., eds.). The ANEMOON Foundation, 2016: 62-65.

73. van Leeuwen C.H.A. Internal and external dispersal of plants by animals: an aquatic perspective on alien interference. Frontiers in Plant Science, 2018; 9: 153.
CrossrefPubMedGoogle Scholar

74. van Veen H, Sasidharan R. Shape shifting by amphibious plants in dynamic hydrological niches. New Phytologist, 2019.
CrossrefPubMedGoogle Scholar

75. Vanderpoorten A. Aquatic bryophytes for a spatio-temporal monitoring of the water pollution of the rivers Meuse and Sambre (Belgium). Environmental Pollution, 1999; 104: 401-410.
CrossrefGoogle Scholar

76. Vymazal J. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 2013; 61: 582-592.
CrossrefGoogle Scholar

77. Wagner B., Seppelt R. Deep-water occurrence of the moss Bryum pseudotriquetrum in Radok Lake, Amery Oasis, East Antarctica. Polar Biology, 2006; 29: 791-795.
CrossrefGoogle Scholar

78. Wetzel R.G. Limnology: Lake and River Ecosystems. 3rd Edn. Academic Press, San Diego, California, 2001. 1006 p.
CrossrefGoogle Scholar

79. Winton M.D. de, Beever J.E. Deep-water bryophyte records from New Zealand lakes. New Zealand Journal of Marine and Freshwater Research, 2004; 38: 329-340.
CrossrefGoogle Scholar

80. Zhang M., Molinos J.G., Su G., Zhang H., Xu J. Spatially structured environmental variation plays a prominent role on the biodiversity of freshwater macrophytes across China. Frontiers in Plant Science, 2019; 10: 161.
Crossref

81. Zhang Y., Jeppesen E., Liu X., Qin B., Shi K., Zhou Y., Thomaz S.M., Deng J. Global loss of aquatic vegetation in lakes. Earth-Science Reviews, 2017; 173: 259–265.
Crossref

82. Zuo Z. Why algae release volatile organic compounds – the emission and roles. Frontiers in Microbiology, 2019; 10: 491.
Crossref


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Studia Biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.