COMPARATIVE ANALYSIS OF ARANEIDAE VENOMS AND TOXINS: CHEMICAL STRUCTURES AND ELECTROPHYSIOLOGICAL EFFECTS

O. M. Klyuchko


DOI: http://dx.doi.org/10.30970/sbi.1401.606

Abstract


The aim of present study was to conduct a comparative analysis of electrophysiological characteristics for venoms and toxins of two species (Nephila clavata and Argiope lobate) of spiders (Araneidae) that could be useful for laboratory practice and future investigations. Their venoms and toxins function as antagonists of glutamate receptors, and these substances were used successfully for investigations of membrane structures. The results of the electrophysiological studies of the venoms and toxins are presented for the venom from N. clavata and its main active component toxin JSTX-3, and for the venom from A. lobata and its three toxins – argiopin AR, argiopinin 1 (ARN-1), argiopinin 2 (ARN-2). The qualitative and quantitative analysis of the correlations between the electrophysiological effects of studied toxins’ and chemical structures of their molecules is presented. The problems of complexity of venoms’ composition and whe­ther venoms’ properties are determined completely by the main active components are discussed. The role of JSTX-3 as a “universal marker of glutamatergic synapses” in different species of fauna are also discussed.


Keywords


venoms of spiders Araneidae, toxins, glutamate receptor antagonists, transmembrane electric current

Full Text:

PDF

References


1. Akaike N., Kawai N., Kiskin N.I., Kljuchko E.M., Krishtal O.A., Tsyndrenko A.Ya. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett., 1987; 79: 326-330.
CrossrefGoogle Scholar

2. Akhunov A., Chernetsky I.I., Sadykov A.S. Biochemical characteristics of some arthropods venoms of Central Asia. Dokl. AN USSR, 1985; 285(4): 1009-1011. (In Russian)

3. Aramaki Y., Yashuhara T., Higashijima T., Yoshioka M., Miwa A., Kawai N., Nakajima T. Chemical characterization of spider toxins JSTX and NSTX. Proc. Japan Academy, 1986; 62(9): 1012-1014.
CrossrefGoogle Scholar

4. Bateman A., Boden P., Dell A., Duce I.R., Quicke D.L., Usherwood P.N.R. Postsynaptic block of a glutaminergic synapse by low molecular weight fraction of spider venom. Brain Res., 1985; 339(2): 237-244.
CrossrefGoogle Scholar

5. Biner O., Trachsel C., Moser A., Kopp L., Langenegger N., Kämpfer U., von Ballmoos C., Nentwig W., Schürch S., Schaller J., Kuhn-Nentwig L. Isolation, N-glycosylations and function of a hyaluronidase-like enzyme from the venom of the spider Cupiennius salei. PLOS ONE, 2015; 10(12): e0143963.
CrossrefPubMedGoogle Scholar

6. Budd T., Clinton P., Dell A., Duce I.R., Johnson S.J., Quicke D.L.J., Usherwood P.N.R., Usoh G. Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Res., 1988; 448(2): 30-39.
CrossrefGoogle Scholar

7. Calvete J.J., Juárez P., Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom., 2007; 42(11):1405-1414.
CrossrefPubMedGoogle Scholar

8. Casewell N.R., Wüster W., Vonk F.J., Harrison R.A., Fry B.G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol., 2013; 28(4): 219-229.
CrossrefPubMedGoogle Scholar

9. Cavigliasso F., Mathé-Hubert H., Kremmer L., Rebuf C., Gatti J.L., Malausa T., Colinet D., Poirié M. Rapid and differential evolution of the venom composition of a parasitoid wasp depending on the host strain. Toxins (Basel), 2019; 11(11): 629.
CrossrefPubMedGoogle Scholar

10. Chan Y.S., Cheung R.C.F., Xia L., Wong J.H., Ng T.B., Chan W.Y. Snake venom toxins: toxici­ty and medicinal applications. Appl Microbiol Biotechnol, 2016; 100(14): 6165-6181.
CrossrefPubMedGoogle Scholar

11. Chemistry and Pharmacology. The Alkaloids. (Ed.) G. A. Cordell, A. Brossi. USA: Acade­mic Press, 1994. 280 p.

12. Daly N.L., Wilson D. Structural diversity of arthropod venom toxins. Toxicon, 2018; 152: 46-56.
CrossrefPubMedGoogle Scholar

13. Early S.L., Michaelis E.K. Presence of protein and glutamate as major constituents of the venom of the spider Araneus gemma. Toxicon, 1987; 25(4): 433-442.
CrossrefGoogle Scholar

14. Friedel T., Nentwig W. Immobilising and lethal effects of spider venoms on the cockroach and the common meal beetle. Toxicon, 1989; 27(3): 305-316.
CrossrefGoogle Scholar

15. Fortschritte der Chemie organischer Naturstoffe. In: Progress in the Chemistry of Organic Natural Products. (Ed.) W. Herz, G.W. Kirby, R.E. Moore, W. Steglich, Ch. Tamm. USA: Springer Science & Business Media, 2012; 66: 332 p.

16. Fox J.W., Serrano S.M. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics, 2008; 8(4): 909-9020.
CrossrefPubMedGoogle Scholar

17. Georgieva D., Arni R.K., Betzel C. Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev Proteomics, 2008; 5(6): 787-797.
CrossrefPubMedGoogle Scholar

18. Ghosh S., Saha K., Dasgupta S.C., Gomes A. In vitro and in vivo anti-arthritic and anti-inflammatory activity of bungarus fasciatus venom. J. Toxins, 2015; 2(1): 5-8.
CrossrefGoogle Scholar

19. Grishin E. Spider toxins active on purinergic P2X3 receptor. Toxicon, 2016; 116: 72.
CrossrefGoogle Scholar

20. Grishin E.V., Volkova T.M., Arseniev A.S. Antagonists of glutamate receptors from the venom of Argiope lobata spider. Bioorganicheskaya chimia, 1988; 14(7): 883-892. (In Russian)

21. Grishin E.V., Volkova T.M. Arsenyev A.S., Reshetova O.S., Onoprienko V.V., Magazanik L.G., Antonov S.M., Fedorova I.M. Structural and functional characteristics of argiopin - ion channel blocker from venom of spider Argiope lobata. Bioorganicheskaya chimia, 1986; 12(8): 1121-1124. (In Russian)

22. Hashimoto Y., Endo Y., Shudo K., Aramaki Y., Kawai N., Nakajima T. Synthesis of spider toxin JSTX-3 and its analogs. Tetrah. Lett., 1987; 28(30): 3511-3514.
CrossrefGoogle Scholar

23. Herzig V. Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxi­con, 2019; 158: 33-37.
CrossrefPubMedGoogle Scholar

24. Jackson H., Usherwood F. N. R. Spider toxins as tools for dissecting elements of excitatory amino acids transmission. Trends in Neurosci., 1988; 11(6): 278-283.
CrossrefGoogle Scholar

25. Jankovic J., Albanese A., Atassi M. Z., Dolly J.O., Hallett M., Mayer N.H. Botulinum Toxin E-Book: Therapeutic Clinical Practice and Science. USA: Elsevier Health Sciences, 2009. 512 p.
Google Scholar

26. Kachel H.S., Buckingham S.D., Sattelle D.B. Insect toxins - selective pharmacological tools and drug/chemical leads. Curr Opin Insect Sci, 2018; 30: 93-98.
CrossrefPubMedGoogle Scholar

27. Klyuchko O.M., Biletsky A.Ya. Computer recognition of chemical substances based on their electrophysiological characteristics. Biotechnologia Acta, 2019; 12(5): 5-28.
CrossrefGoogle Scholar

28. Klyuchko O. M. Chemical substances from terrestrial arthropods as material for laboratory investigations. Biol. Stud., 2019: 13(1); 129-144.
CrossrefGoogle Scholar

29. Klyuchko O. M. Active compounds - phenol and indole derivatives of terrestrial arthropods: some electrophysiological and chemical characteristics. Biol. Stud., 2019: 13(2); 99-116.
CrossrefGoogle Scholar

30. Klyuchko O.M., Biletsky A.Ya., Shutko V.N. Method of production of physical molecular memo­ry in anisotropic media with molecules - derivatives of phenol. Patent UA 135531 U; B82Y 40/00, B82Y 10/00, H01B 1/12, C12Q 1/00, G11C 13/00. Priority: 14.12.2018, u201812430, Issued: 10.07.2019, Bull. 13, 10 p. (In Ukrainian)

31. Klyuchko O.M., Biletsky A.Ya., Lizunov G.V., Piankova O.V. Method of application of monito­ring system with biosensor and databases. Patent UA 135574 U; C12Q 1/02, G01N33/00, G01N33/50, G016F 11/20. Priority: 17.01.2019, u201900475, Issued: 10.07.2019, Bull. 13, 10 p. (In Ukrainian)

32. Klyuchko O.M. Method of application of biotechnical monitoring system for bioindicators' accounting with biosensor and sub-system for optical registration. Patent UA 129987 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.2018, u201804662, Issued: 26.11.2018, Bull. 22, 11 p. (In Ukrainian)

33. Klyuchko O.M. Method of qualitative analysis of chemical substances. Patent UA 131016 U, G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805174, Issued: 10.01.2019, Bull. 1, 9 p. (In Ukrainian)

34. Klyuchko O.M.. Method for monitoring of chemicals influence on bioorganisms in few time intervals. Patent UA 134575 U; G01N33/00, C12N 15/00, A61P 39/00. Priority: 14.12.2018, u201812443, Issued: 27.05.2019, Bull. 10, 10 p. (In Ukrainian)

35. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.O. Method of bio-sensor test system application. Patent UA 129923 U, G01N33/00, G01N33/50, C12Q 1/02. Priority: 22.03.2018, u201802896, Issued: 26.11.2018, Bull. 22, 7 p. (In Ukrainian)

36. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804663, Issued: 11.02.2019, Bull. 3, 7 p. (In Ukrainian)

37. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.A. Method of quantitative analysis of chemical substances. Patent UA 131524 U; G01N33/50, G01N21/78, C12Q 1/60G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805175, Issued: 25.01.2019, Bull. 2, 10 p. (In Ukrainian)

38. Klyuchko O.M., Biletsky A.Ya. Method of qualitative analysis of hydrocarbons with harmful and toxic effect on bioobjects. Patent UA 133676 U; G01N 33/50, G01N 21/78. Priority: 06.06.2018, u201806342, Issued: 25.04.2019, Bull. 8, 10 p. (In Ukrainian)

39. Koh D.C., Armugam A., Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci, 2006; 63(24): 3030-3041.
CrossrefPubMedGoogle Scholar

40. Kostyuk P.G., Kryshtal O.A. Mechanisms of electrical excitability of the nerve cell. M: Nauka, 1981. 208 p. (In Russian)

41. Kusano Tomonobu, Suzuki Hideyuki. Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. USA: Springer, 2015. 336 p.
CrossrefGoogle Scholar

42. Lajoie D.M., Zobel-Thropp P.A., Delahaye J., Roberts S., Kumirov V.K., Bandarian V., Binford G.J., Cordes M.H.J. The chemistry and functional diversity of spider phospholipase D toxins. Toxicon, 2016; 116: 79.
CrossrefGoogle Scholar

43. Lee S.Y., Kim S.T., Jung J.K., Lee J.H. A comparison of spider communities in Bt and non-Bt rice fields. Environ Entomol, 2014; 43(3): 819-827.
CrossrefPubMedGoogle Scholar

44. Magazanik L.G., Antonov S.M., Fedorova I.M., Grishin E.V. The action of Argiope lobata spider venom and its low molecular weight component - argiopin on postsynaptic membranes. Biological Membranes, 1986; 3(12): 1204-1219. (In Russian)

45. Magalhães G., Siquueira R., Calabria P., Tavora B., Barbaro K., Faquim-Mauro E., Della-Casa M. When spider and snake get along: Fusion of a snake disintegrin with a spider phospholipase D to explore their synergistic effects on a tumor cell. Toxicon, 2019; 168: 40-48.
CrossrefPubMedGoogle Scholar

46. Magura I.S. Problems of electrical excitability of neuronal membrane. Kyiv: Naukova Dumka, 1981. 208 p. (In Russian)

47. Miwa A., Kawai N., Saito M, Pan-Hou H., Yosioka M. Effect of spider toxin (JSTX) on excitatory postsynaptic current at neuromuscular synapse of spiny lobster. J. Neurophys., 1987; 58(2): 216-220.
CrossrefPubMedGoogle Scholar

48. Miwa A., Kawai N., Ui M. Pertussis toxin blocks presynaptic glutamate receptor - a novel "glutamate" receptor in lobster neuromuscular synapse. Brain Res., 1987; 416(1): 162-165.
CrossrefGoogle Scholar

49. Murúa M.G., Vera M.A., Michel A., Casmuz A.S., Fatoretto J., Gastaminza G. Performance of Field-Collected Spodoptera frugiperda (Lepidoptera: Noctuidae) Strains Exposed to Different Transgenic and Refuge Maize Hybrids in Argentina. Journal of Insect Science, 2019; 19(6): 21.
CrossrefPubMedGoogle Scholar

50. Pal S.K., Gomes A., Dasgupta S.C., Gomes A. Snake venom as therapeutic agents: from toxin to drug development. Indian J Exp Biol, 2002; 40(12): 1353-8.
Google Scholar

51. Pan-Hou H., Suda Y. Molecular action mechanism of spider toxin on glutamate receptor: role of 2,4-dihydroxyphenylacetic acid in toxin molecule. Brain Res., 1987; 418(1): 198-200.
CrossrefGoogle Scholar

52. Pan-Hou H., Suda Y., Sumi M., Yoshioka M., Kawai N. Inhibitory effect of 2,4-dihydroxyphenylacetylasparagine, a common moiety of spider toxins on glutamate binding to rat brain synaptic membranes. Neurosci. Lett., 1987; 81: 199-203.
CrossrefGoogle Scholar

53. Pan-Hou H., Suda Y., Sumi M., Yoshioka M, Kawai N. A spider toxin (JSTX) inhibits L-glutanate uptake by rat brain synaptosomes. Brain Res., 1989; 476(2): 354-357.
CrossrefGoogle Scholar

54. Piek T. Insect venoms and toxins. In: Kerkut G. A. (Ed.) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press, 1987; 11: 595-635.
Crossref

55. Poulain B., Lemichez E., Popoff M.R. Neuronal selectivity of botulinum neurotoxins. Toxicon, 2020; 178: 20-32.
CrossrefPubMedGoogle Scholar

56. Rádis-Baptista G., Konno K. Arthropod Venom Components and Their Potential Usage. Toxins (Basel), 2020; 12(2): 82.
CrossrefPubMedGoogle Scholar

57. Saito M, Kawai N., Miwa A., Pan-Hou H., Yoshioka M. Spider toxin (JSTX) blocks glutamate synapse in hippocampal pyramidal neurons. Brain Res., 1985; 346(2): 397-399.
CrossrefGoogle Scholar

58. Senji Laxme R.R., Suranse V., Sunagar K. Arthropod venoms: Biochemistry, ecology and evolution. Toxicon, 2019; 158: 84-103.
CrossrefPubMedGoogle Scholar

59. Scharff N., Coddington J.A., Blackledge T.A., Agnarsson I., Framenau V.W., Szűts T., Cheryl Y., Hayashi C.Y., Dimitrov D. Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics, 2020; 36(1): 1-21.
CrossrefGoogle Scholar

60. Schwartz E.F., Mourão C.B., Moreira K.G., Camargos T.S., Mortari M.R. Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers, 2012; 98(4): 385-405.
CrossrefPubMedGoogle Scholar

61. Skock V.I., Selianko A.A., Derckach V.A. Neuronal cholynoreceptors. M: Nauka, 1987. 343 p. (In Russian)

62. Usmanov P.B., Kalikulov D., Shadyeva N.G., Nenilin A.B. Tashmuchamedov B.A. Postsynaptic blocking of glutamatergic and cholinergic synapses as a common property of Araneidae spider venoins. Toxicon, 1985; 23(3): 528-553.
CrossrefGoogle Scholar

63. Vycklicky L., Krusek J., Vycklicky L., Vyskochil F. Spider venom of Araneus opens and desentitizes glutamate channels in chicken spinal cord neurons. Neurosci. Lett., 1986; 68: 227-231.
CrossrefGoogle Scholar

64. Walker A.A., Robinson S.D., Yeates D.K., Jin J., Baumann K., Dobson J., Fry B.G., King G.F. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon, 2018; 154: 15-27.
CrossrefPubMedGoogle Scholar

65. Walker A.A., Rosenthal M., Undheim E.E.A., King G.F. Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects. J Vis Exp, 2018; (134): e57729.
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 O. M. Klyuchko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.