COMPARATIVE ANALYSIS OF ARANEIDAE VENOMS AND TOXINS: CHEMICAL STRUCTURES AND ELECTROPHYSIOLOGICAL EFFECTS
DOI: http://dx.doi.org/10.30970/sbi.1401.606
Abstract
The aim of present study was to conduct a comparative analysis of electrophysiological characteristics for venoms and toxins of two species (Nephila clavata and Argiope lobate) of spiders (Araneidae) that could be useful for laboratory practice and future investigations. Their venoms and toxins function as antagonists of glutamate receptors, and these substances were used successfully for investigations of membrane structures. The results of the electrophysiological studies of the venoms and toxins are presented for the venom from N. clavata and its main active component toxin JSTX-3, and for the venom from A. lobata and its three toxins – argiopin AR, argiopinin 1 (ARN-1), argiopinin 2 (ARN-2). The qualitative and quantitative analysis of the correlations between the electrophysiological effects of studied toxins’ and chemical structures of their molecules is presented. The problems of complexity of venoms’ composition and whether venoms’ properties are determined completely by the main active components are discussed. The role of JSTX-3 as a “universal marker of glutamatergic synapses” in different species of fauna are also discussed.
Keywords
Full Text:
PDFReferences
1. Akaike N., Kawai N., Kiskin N.I., Kljuchko E.M., Krishtal O.A., Tsyndrenko A.Ya. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett., 1987; 79: 326-330. Crossref ● Google Scholar | ||||
| ||||
2. Akhunov A., Chernetsky I.I., Sadykov A.S. Biochemical characteristics of some arthropods venoms of Central Asia. Dokl. AN USSR, 1985; 285(4): 1009-1011. (In Russian) | ||||
| ||||
3. Aramaki Y., Yashuhara T., Higashijima T., Yoshioka M., Miwa A., Kawai N., Nakajima T. Chemical characterization of spider toxins JSTX and NSTX. Proc. Japan Academy, 1986; 62(9): 1012-1014. Crossref ● Google Scholar | ||||
| ||||
4. Bateman A., Boden P., Dell A., Duce I.R., Quicke D.L., Usherwood P.N.R. Postsynaptic block of a glutaminergic synapse by low molecular weight fraction of spider venom. Brain Res., 1985; 339(2): 237-244. Crossref ● Google Scholar | ||||
| ||||
5. Biner O., Trachsel C., Moser A., Kopp L., Langenegger N., Kämpfer U., von Ballmoos C., Nentwig W., Schürch S., Schaller J., Kuhn-Nentwig L. Isolation, N-glycosylations and function of a hyaluronidase-like enzyme from the venom of the spider Cupiennius salei. PLOS ONE, 2015; 10(12): e0143963. Crossref ● PubMed ● Google Scholar | ||||
| ||||
6. Budd T., Clinton P., Dell A., Duce I.R., Johnson S.J., Quicke D.L.J., Usherwood P.N.R., Usoh G. Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Res., 1988; 448(2): 30-39. Crossref ● Google Scholar | ||||
| ||||
7. Calvete J.J., Juárez P., Sanz L. Snake venomics. Strategy and applications. J Mass Spectrom., 2007; 42(11):1405-1414. Crossref ● PubMed ● Google Scholar | ||||
| ||||
8. Casewell N.R., Wüster W., Vonk F.J., Harrison R.A., Fry B.G. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol., 2013; 28(4): 219-229. Crossref ● PubMed ● Google Scholar | ||||
| ||||
9. Cavigliasso F., Mathé-Hubert H., Kremmer L., Rebuf C., Gatti J.L., Malausa T., Colinet D., Poirié M. Rapid and differential evolution of the venom composition of a parasitoid wasp depending on the host strain. Toxins (Basel), 2019; 11(11): 629. Crossref ● PubMed ● Google Scholar | ||||
| ||||
10. Chan Y.S., Cheung R.C.F., Xia L., Wong J.H., Ng T.B., Chan W.Y. Snake venom toxins: toxicity and medicinal applications. Appl Microbiol Biotechnol, 2016; 100(14): 6165-6181. Crossref ● PubMed ● Google Scholar | ||||
| ||||
11. Chemistry and Pharmacology. The Alkaloids. (Ed.) G. A. Cordell, A. Brossi. USA: Academic Press, 1994. 280 p. | ||||
| ||||
12. Daly N.L., Wilson D. Structural diversity of arthropod venom toxins. Toxicon, 2018; 152: 46-56. Crossref ● PubMed ● Google Scholar | ||||
| ||||
13. Early S.L., Michaelis E.K. Presence of protein and glutamate as major constituents of the venom of the spider Araneus gemma. Toxicon, 1987; 25(4): 433-442. Crossref ● Google Scholar | ||||
| ||||
14. Friedel T., Nentwig W. Immobilising and lethal effects of spider venoms on the cockroach and the common meal beetle. Toxicon, 1989; 27(3): 305-316. Crossref ● Google Scholar | ||||
| ||||
15. Fortschritte der Chemie organischer Naturstoffe. In: Progress in the Chemistry of Organic Natural Products. (Ed.) W. Herz, G.W. Kirby, R.E. Moore, W. Steglich, Ch. Tamm. USA: Springer Science & Business Media, 2012; 66: 332 p. | ||||
| ||||
16. Fox J.W., Serrano S.M. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics, 2008; 8(4): 909-9020. Crossref ● PubMed ● Google Scholar | ||||
| ||||
17. Georgieva D., Arni R.K., Betzel C. Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev Proteomics, 2008; 5(6): 787-797. Crossref ● PubMed ● Google Scholar | ||||
| ||||
18. Ghosh S., Saha K., Dasgupta S.C., Gomes A. In vitro and in vivo anti-arthritic and anti-inflammatory activity of bungarus fasciatus venom. J. Toxins, 2015; 2(1): 5-8. Crossref ● Google Scholar | ||||
| ||||
19. Grishin E. Spider toxins active on purinergic P2X3 receptor. Toxicon, 2016; 116: 72. Crossref ● Google Scholar | ||||
| ||||
20. Grishin E.V., Volkova T.M., Arseniev A.S. Antagonists of glutamate receptors from the venom of Argiope lobata spider. Bioorganicheskaya chimia, 1988; 14(7): 883-892. (In Russian) | ||||
| ||||
21. Grishin E.V., Volkova T.M. Arsenyev A.S., Reshetova O.S., Onoprienko V.V., Magazanik L.G., Antonov S.M., Fedorova I.M. Structural and functional characteristics of argiopin - ion channel blocker from venom of spider Argiope lobata. Bioorganicheskaya chimia, 1986; 12(8): 1121-1124. (In Russian) | ||||
| ||||
22. Hashimoto Y., Endo Y., Shudo K., Aramaki Y., Kawai N., Nakajima T. Synthesis of spider toxin JSTX-3 and its analogs. Tetrah. Lett., 1987; 28(30): 3511-3514. Crossref ● Google Scholar | ||||
| ||||
23. Herzig V. Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxicon, 2019; 158: 33-37. Crossref ● PubMed ● Google Scholar | ||||
| ||||
24. Jackson H., Usherwood F. N. R. Spider toxins as tools for dissecting elements of excitatory amino acids transmission. Trends in Neurosci., 1988; 11(6): 278-283. Crossref ● Google Scholar | ||||
| ||||
25. Jankovic J., Albanese A., Atassi M. Z., Dolly J.O., Hallett M., Mayer N.H. Botulinum Toxin E-Book: Therapeutic Clinical Practice and Science. USA: Elsevier Health Sciences, 2009. 512 p. Google Scholar | ||||
| ||||
26. Kachel H.S., Buckingham S.D., Sattelle D.B. Insect toxins - selective pharmacological tools and drug/chemical leads. Curr Opin Insect Sci, 2018; 30: 93-98. Crossref ● PubMed ● Google Scholar | ||||
| ||||
27. Klyuchko O.M., Biletsky A.Ya. Computer recognition of chemical substances based on their electrophysiological characteristics. Biotechnologia Acta, 2019; 12(5): 5-28. Crossref ● Google Scholar | ||||
| ||||
28. Klyuchko O. M. Chemical substances from terrestrial arthropods as material for laboratory investigations. Biol. Stud., 2019: 13(1); 129-144. Crossref ● Google Scholar | ||||
| ||||
29. Klyuchko O. M. Active compounds - phenol and indole derivatives of terrestrial arthropods: some electrophysiological and chemical characteristics. Biol. Stud., 2019: 13(2); 99-116. | ||||
| ||||
30. Klyuchko O.M., Biletsky A.Ya., Shutko V.N. Method of production of physical molecular memory in anisotropic media with molecules - derivatives of phenol. Patent UA 135531 U; B82Y 40/00, B82Y 10/00, H01B 1/12, C12Q 1/00, G11C 13/00. Priority: 14.12.2018, u201812430, Issued: 10.07.2019, Bull. 13, 10 p. (In Ukrainian) | ||||
| ||||
31. Klyuchko O.M., Biletsky A.Ya., Lizunov G.V., Piankova O.V. Method of application of monitoring system with biosensor and databases. Patent UA 135574 U; C12Q 1/02, G01N33/00, G01N33/50, G016F 11/20. Priority: 17.01.2019, u201900475, Issued: 10.07.2019, Bull. 13, 10 p. (In Ukrainian) | ||||
| ||||
32. Klyuchko O.M. Method of application of biotechnical monitoring system for bioindicators' accounting with biosensor and sub-system for optical registration. Patent UA 129987 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.2018, u201804662, Issued: 26.11.2018, Bull. 22, 11 p. (In Ukrainian) | ||||
| ||||
33. Klyuchko O.M. Method of qualitative analysis of chemical substances. Patent UA 131016 U, G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805174, Issued: 10.01.2019, Bull. 1, 9 p. (In Ukrainian) | ||||
| ||||
34. Klyuchko O.M.. Method for monitoring of chemicals influence on bioorganisms in few time intervals. Patent UA 134575 U; G01N33/00, C12N 15/00, A61P 39/00. Priority: 14.12.2018, u201812443, Issued: 27.05.2019, Bull. 10, 10 p. (In Ukrainian) | ||||
| ||||
35. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.O. Method of bio-sensor test system application. Patent UA 129923 U, G01N33/00, G01N33/50, C12Q 1/02. Priority: 22.03.2018, u201802896, Issued: 26.11.2018, Bull. 22, 7 p. (In Ukrainian) | ||||
| ||||
36. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804663, Issued: 11.02.2019, Bull. 3, 7 p. (In Ukrainian) | ||||
| ||||
37. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.A. Method of quantitative analysis of chemical substances. Patent UA 131524 U; G01N33/50, G01N21/78, C12Q 1/60G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805175, Issued: 25.01.2019, Bull. 2, 10 p. (In Ukrainian) | ||||
| ||||
38. Klyuchko O.M., Biletsky A.Ya. Method of qualitative analysis of hydrocarbons with harmful and toxic effect on bioobjects. Patent UA 133676 U; G01N 33/50, G01N 21/78. Priority: 06.06.2018, u201806342, Issued: 25.04.2019, Bull. 8, 10 p. (In Ukrainian) | ||||
| ||||
39. Koh D.C., Armugam A., Jeyaseelan K. Snake venom components and their applications in biomedicine. Cell Mol Life Sci, 2006; 63(24): 3030-3041. Crossref ● PubMed ● Google Scholar | ||||
| ||||
40. Kostyuk P.G., Kryshtal O.A. Mechanisms of electrical excitability of the nerve cell. M: Nauka, 1981. 208 p. (In Russian) | ||||
| ||||
41. Kusano Tomonobu, Suzuki Hideyuki. Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. USA: Springer, 2015. 336 p. Crossref ● Google Scholar | ||||
| ||||
42. Lajoie D.M., Zobel-Thropp P.A., Delahaye J., Roberts S., Kumirov V.K., Bandarian V., Binford G.J., Cordes M.H.J. The chemistry and functional diversity of spider phospholipase D toxins. Toxicon, 2016; 116: 79. Crossref ● Google Scholar | ||||
| ||||
43. Lee S.Y., Kim S.T., Jung J.K., Lee J.H. A comparison of spider communities in Bt and non-Bt rice fields. Environ Entomol, 2014; 43(3): 819-827. Crossref ● PubMed ● Google Scholar | ||||
| ||||
44. Magazanik L.G., Antonov S.M., Fedorova I.M., Grishin E.V. The action of Argiope lobata spider venom and its low molecular weight component - argiopin on postsynaptic membranes. Biological Membranes, 1986; 3(12): 1204-1219. (In Russian) | ||||
| ||||
45. Magalhães G., Siquueira R., Calabria P., Tavora B., Barbaro K., Faquim-Mauro E., Della-Casa M. When spider and snake get along: Fusion of a snake disintegrin with a spider phospholipase D to explore their synergistic effects on a tumor cell. Toxicon, 2019; 168: 40-48. Crossref ● PubMed ● Google Scholar | ||||
| ||||
46. Magura I.S. Problems of electrical excitability of neuronal membrane. Kyiv: Naukova Dumka, 1981. 208 p. (In Russian) | ||||
| ||||
47. Miwa A., Kawai N., Saito M, Pan-Hou H., Yosioka M. Effect of spider toxin (JSTX) on excitatory postsynaptic current at neuromuscular synapse of spiny lobster. J. Neurophys., 1987; 58(2): 216-220. Crossref ● PubMed ● Google Scholar | ||||
| ||||
48. Miwa A., Kawai N., Ui M. Pertussis toxin blocks presynaptic glutamate receptor - a novel "glutamate" receptor in lobster neuromuscular synapse. Brain Res., 1987; 416(1): 162-165. Crossref ● Google Scholar | ||||
| ||||
49. Murúa M.G., Vera M.A., Michel A., Casmuz A.S., Fatoretto J., Gastaminza G. Performance of Field-Collected Spodoptera frugiperda (Lepidoptera: Noctuidae) Strains Exposed to Different Transgenic and Refuge Maize Hybrids in Argentina. Journal of Insect Science, 2019; 19(6): 21. Crossref ● PubMed ● Google Scholar | ||||
| ||||
50. Pal S.K., Gomes A., Dasgupta S.C., Gomes A. Snake venom as therapeutic agents: from toxin to drug development. Indian J Exp Biol, 2002; 40(12): 1353-8. Google Scholar | ||||
| ||||
51. Pan-Hou H., Suda Y. Molecular action mechanism of spider toxin on glutamate receptor: role of 2,4-dihydroxyphenylacetic acid in toxin molecule. Brain Res., 1987; 418(1): 198-200. Crossref ● Google Scholar | ||||
| ||||
52. Pan-Hou H., Suda Y., Sumi M., Yoshioka M., Kawai N. Inhibitory effect of 2,4-dihydroxyphenylacetylasparagine, a common moiety of spider toxins on glutamate binding to rat brain synaptic membranes. Neurosci. Lett., 1987; 81: 199-203. Crossref ● Google Scholar | ||||
| ||||
53. Pan-Hou H., Suda Y., Sumi M., Yoshioka M, Kawai N. A spider toxin (JSTX) inhibits L-glutanate uptake by rat brain synaptosomes. Brain Res., 1989; 476(2): 354-357. Crossref ● Google Scholar | ||||
| ||||
54. Piek T. Insect venoms and toxins. In: Kerkut G. A. (Ed.) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press, 1987; 11: 595-635. Crossref | ||||
| ||||
55. Poulain B., Lemichez E., Popoff M.R. Neuronal selectivity of botulinum neurotoxins. Toxicon, 2020; 178: 20-32. Crossref ● PubMed ● Google Scholar | ||||
| ||||
56. Rádis-Baptista G., Konno K. Arthropod Venom Components and Their Potential Usage. Toxins (Basel), 2020; 12(2): 82. Crossref ● PubMed ● Google Scholar | ||||
| ||||
57. Saito M, Kawai N., Miwa A., Pan-Hou H., Yoshioka M. Spider toxin (JSTX) blocks glutamate synapse in hippocampal pyramidal neurons. Brain Res., 1985; 346(2): 397-399. Crossref ● Google Scholar | ||||
| ||||
58. Senji Laxme R.R., Suranse V., Sunagar K. Arthropod venoms: Biochemistry, ecology and evolution. Toxicon, 2019; 158: 84-103. Crossref ● PubMed ● Google Scholar | ||||
| ||||
59. Scharff N., Coddington J.A., Blackledge T.A., Agnarsson I., Framenau V.W., Szűts T., Cheryl Y., Hayashi C.Y., Dimitrov D. Phylogeny of the orb-weaving spider family Araneidae (Araneae: Araneoidea). Cladistics, 2020; 36(1): 1-21. Crossref ● Google Scholar | ||||
| ||||
60. Schwartz E.F., Mourão C.B., Moreira K.G., Camargos T.S., Mortari M.R. Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers, 2012; 98(4): 385-405. Crossref ● PubMed ● Google Scholar | ||||
| ||||
61. Skock V.I., Selianko A.A., Derckach V.A. Neuronal cholynoreceptors. M: Nauka, 1987. 343 p. (In Russian) | ||||
| ||||
62. Usmanov P.B., Kalikulov D., Shadyeva N.G., Nenilin A.B. Tashmuchamedov B.A. Postsynaptic blocking of glutamatergic and cholinergic synapses as a common property of Araneidae spider venoins. Toxicon, 1985; 23(3): 528-553. Crossref ● Google Scholar | ||||
| ||||
63. Vycklicky L., Krusek J., Vycklicky L., Vyskochil F. Spider venom of Araneus opens and desentitizes glutamate channels in chicken spinal cord neurons. Neurosci. Lett., 1986; 68: 227-231. Crossref ● Google Scholar | ||||
| ||||
64. Walker A.A., Robinson S.D., Yeates D.K., Jin J., Baumann K., Dobson J., Fry B.G., King G.F. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon, 2018; 154: 15-27. Crossref ● PubMed ● Google Scholar | ||||
| ||||
65. Walker A.A., Rosenthal M., Undheim E.E.A., King G.F. Harvesting Venom Toxins from Assassin Bugs and Other Heteropteran Insects. J Vis Exp, 2018; (134): e57729. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 O. M. Klyuchko
This work is licensed under a Creative Commons Attribution 4.0 International License.