Biol. Stud. 2019: 13(2); 117–130 • DOI: https://doi.org/10.30970/sbi.1302.600

METHODS OF KERATIN EXTRACTION FROM WOOL AND HAIR AND PROSPECTS OF THEIR APPLICATION IN BIOMEDICINE AND BIOENGINEERING

V. V. Mykhaliuk, V. V. Havryliak

Abstract


The present article gives the overview of scientific information on the hair structure, the structural and functional properties of keratins, and methods of their extracting from the natural fibers. The article substantiates an importance of keratin extraction by breaking the disulfide bonds and converting the keratin into a soluble form while maintaining
covalent bonds. Such extraction preserves the native properties of these proteins, that ensures their further use as functional biomaterials. The examples of such properties are: resistance of keratin to the effects of chemical and biological factors (due to high frequency of disulfide bonds that make a large number of chemical modifications of proteins possible) and high biocompatibility and low cytotoxicity of keratin-based preparations (due to a similarity of keratin to the extracellular matrix of biological tissues). The keratin-based materials, obtained by this way and then lyophilized, can form fibrillar structures when a particular solvent is selected. The methods of keratins extraction, as well as the efficiency and electrophoretic profiles of obtained extracts, were also analyzed. The purposeful extraction is carried out by the methods based on oxidation, reduction, and sulfitolysis reactions. The oxidation reactions of keratin are irreversible and cause the oxidation of cysteine residues to cysteic acid with the formation of keratosis. At the same time, keratin is obtained due to a reduction reactions. As a result of the reversible process of sulfitolysis, the S-sulfonate anion is formed. The paper also considers promising applications of extracted keratin in biomedicine and bioengineering. The biomedical technologies are related to the effective treatment of hair pathologies. The second area is the creation of keratin-based biomaterials with a wide range of applications, such as tissue engineering, reparative medicine, textile industry, agriculture, cosmetology, and production of cleaning equipment. The third area of keratins application is the identification of a person. Such application makes an important contribution to the anthropological research and forensic science. High resistance of hair proteins to adverse environmental conditions makes this area very promising.

 

Keywords: hair, keratins, extraction

References


1. Aboushwareb T., Eberli D., Ward C., Broda C., Holcomb J., Atala A., Van Dyke M. A keratin biomaterial gel hemostat derived from human hair: Evaluation in a rabbit model of lethal liver injury. J. Biomed. Mater. Res. B., 2009; 90: 45-54.
https://doi.org/10.1002/jbm.b.31251
PMid:18988274
2. Bertrand L., Doucet J., Simionovici A., Tsoucaris G., Walter P. Lead-revealed lipid organisation in human hair. Biochim Biophys Acta, 2003; 1620: 218-224.
https://doi.org/10.1016/S0304-4165(02)00538-X
3. Beyer C. The keratin or horny substance of the hair. DE22643. German Pat.,1907.
4. Bouillon C., Wilkinson J.D.. The Science of Hair Care. Florida: CRC Press, Taylor & Francis Group., 2005; 752.
https://doi.org/10.1201/b14191
PMCid:PMC2903003
5. Bragulla H.H., Homberger D.G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat, 2009; 214(4): 516-59.
https://doi.org/10.1111/j.1469-7580.2009.01066.x
PMid:19422428 PMCid:PMC2736122
6. Brown E.-M., Pandya K., Taylor M.-M., Liu C.-K. Comparison of methods for extraction of keratin from waste wool. Agric. Sci., 2016; 7: 670-679.
https://doi.org/10.4236/as.2016.710063
7. Conway J.F., Parry D.A.D. Structural features in the heptad substructures and longer range repeats of two-stranded alpha-fibrous proteins. Int J Biol Macromol, 1990; 12: 328-334.
https://doi.org/10.1016/0141-8130(90)90023-4
8. Coulombe P.A.,Omary M.B. "Hard" and "soft" principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol, 2002; 14(1): 110-22.
https://doi.org/10.1016/S0955-0674(01)00301-5
9. Deb-Choudhury S., Plowman J.E., Harland D.P. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool. Methods in Enzymology, 2016; 568: 279-301.
https://doi.org/10.1016/bs.mie.2015.07.018
PMid:26795475
10. Deedrick D.W. Microscopy of hair part 1: a practical guide and manual for human hair. Forensic Sci. Commun., 2004; 1: 1-7.
11. Fan J., Liu J.-F., He J.-H. Hierarchy of Wool Fibers and Fractal Dimensions. International Journal of Nonlinear Sciences and Numerical Simulation, 2008; 9(3): 293-296.
https://doi.org/10.1515/IJNSNS.2008.9.3.293
12. Feairheller S.H., Taylor M.M., Windus W., Filachione E.M., Naghski J. Recovery and Analyses of Hair Proteins from Tannery Unhairing Wastes. Journal of Agricultural and Food Chemistry, 1972; 20: 668-670.
https://doi.org/10.1021/jf60181a033
PMid:5072322
13. Feughelman M., Johnson D. H. Morphology and properties of hair. Hair and hair care, 1997; 1-32.
https://doi.org/10.1201/9780203719565-1
14. Fraser R., David A. Macrofibril assembly in trichocyte (hard -) keratins. Journal of Structural Biology, 2003; 142: 319-325.
https://doi.org/10.1016/S1047-8477(03)00027-3
15. Hamasaki S., Tachibana A., Tada D., Yamauchi K., Tanabe T. Fabrication of highly porous keratin sponges by freeze-drying in the presence of calcium alginate beads. Mater Sci Eng, 2008; 28: 1250-1254.
https://doi.org/10.1016/j.msec.2007.11.008
16. Harland D.P., Caldwell J.P., Woods J.L., Walls R.J., Bryson W.G. Arrangement of trichokeratin intermediate filaments and matrix in the cortex of Merino wool. J Struct Biol, 2011; 173(1): 29-37.
https://doi.org/10.1016/j.jsb.2010.08.009
PMid:20732426
17. Hatakeyama R., Tomita Y., Takigami S. Preparation of Water Soluble Wool Keratin and Its Application for Human Hair. Transactons of the Materials Research Society of Japan, 2009; 34: 399-402.
https://doi.org/10.14723/tmrsj.34.399
18. Havryliak V.V., Mykhaliuk V.V. The factors impacting the efficiency of the extraction of keratin wool fibers. Visnyk of Lviv University. Biological Series, 2016; 73: 47-50. (In Ukrainian)
19. Heid H.W., Moll I., Franke W.W. Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues. II. Concomitant and mutually exclusive synthesis of trichocytic and epithelial cytokeratins in diverse human and bovine tissues (hair follicle, nail bed and matrix, lingual papilla, thymic reticulum). Differentiation, 1988; 37(2): 137-157.
https://doi.org/10.1111/j.1432-0436.1988.tb00805.x
PMid:2456239
20. Heid H.W., Moll I., Franke W.W. Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues. I. Human and bovine hair follicles. Differentiation, 1988; 37(2): 137-157.
https://doi.org/10.1111/j.1432-0436.1988.tb00805.x
PMid:2456239
21. Heid H.W., Werner E., Franke W.W. The complement of native alpha-keratin polypeptides of hair-forming cells: a subset of eight polypeptides that differ from epithelial cytokeratins. Differentiation, 1986; 32(2): 101-119.
https://doi.org/10.1111/j.1432-0436.1986.tb00562.x
PMid:2431943
22. Isarankura Na Ayutthaya S., Tanpichai S., Wootthikanokkhan J. Keratin Extracted from Chicken Feather Waste: Extraction, Preparation, and Structural Characterization of the Keratin and Keratin/Biopolymer Films and Electrospuns. Journal of Polymers, 2015; 23(4).
https://doi.org/10.1007/s10924-015-0725-8
23. Jones L.N., Rogers G.E., Rufaut N., Sinclair R.D. Location of keratin-associated proteins in developing fiber cuticle cells using immunoelectron microscopy. Int J Trichology, 2010; 2: 89-95.
https://doi.org/10.4103/0974-7753.77512
PMid:21712910 PMCid:PMC3107965
24 Jones L.N., Simon M., Watts N.R., Booy F.P., Steven A.C., Parry D.A.D. Intermediate Filament Structure: Hard α-Keratin. Biophysical Chemistry, 1997; 68: 83-93.
https://doi.org/10.1016/S0301-4622(97)00013-6
25. Katoh K., Shibayama M., Tanabe T., Yamauchi K. Preparation and properties of keratin-poly(vinyl alcohol) blend fiber. J Appl Polym Sci, 2004; 91: 756-762.
https://doi.org/10.1002/app.13236
26. Langbein L., Rogers M. A., Winter H. Praetzel S., Beckhaus U., Rackwitz H.R., Schweizer J. The catalog of human hair keratins: I. Expression of the nine type I members in the hair follicle. J Biol Chem, 1999; 274:19874-19893.
https://doi.org/10.1074/jbc.274.28.19874
PMid:10391933
27. Langbein L., Rogers M.A., Winter H., Praetzel S., Schweizer J. The catalog of human hair keratins: II. Expression of the six type II members in the hair follicle and the combined catalog of human type I and type II keratins. J Biol Chem, 2001; 276(37): 35123-35132.
https://doi.org/10.1074/jbc.M103305200
PMid:11445569
28. Langbein L., Yoshida H., Praetzel-Wunder S., Parry D.A., Schweizer J. The keratins of the human beard hair medulla: the riddle in the middle. J Invest Dermatol, 2010; 130: 55-73.
https://doi.org/10.1038/jid.2009.192
PMid:19587698
29. Lee, H., Noh, K., Lee, S.C., Kwon, I.K., Han, D.W., Lee, I.S., Hwang, Y.S. Human Hair Keratin and Its-Based Biomaterials for Biomedical Applications. Tissue Engineering and Regene­rative Medicine, 2014; 11: 255-265.
https://doi.org/10.1007/s13770-014-0029-4
30. Marmer W.N., Dudley R.L. The Oxidative Degradation of Keratin (Wool and Bovine Hair). Journal of the American Leather Chemists Association, 2006; 101: 408-415.
31. McKinnon A.J., Harland D.P. The role of liquid-crystalline structures in the morphogenesis of animal fibers. Int J Trichology, 2010; 2: 101-103.
https://doi.org/10.4103/0974-7753.77516
PMid:21712896 PMCid:PMC3107951
32. Naito S., Arai K. Type and location of SS linkages in human hair and their relation to fiber properties in water. J Appl Polym Sci, 1996; 61: 1918-2113.
https://doi.org/10.1002/(SICI)1097-4628(19960919)61:12<2113::AID-APP9>3.0.CO;2-D
33. Nakamura A., Arimoto M., Takeuchi K., Fujii T. A Rapid Extraction Procedure of Human Hair Proteins and Identification of Phosphorylated Species. Biological and Pharmaceutical Bulletin, 2002; 25: 569-572.
https://doi.org/10.1248/bpb.25.569
PMid:12033494
34. Orfanos C.E., Montagna W., Stuttgen G. Hair Research. Springer, 1981; 712 p.
https://doi.org/10.1007/978-3-642-81650-5
35. Parker G.J., Leppert T., Anex D.S., Hilmer J.K., Matsunami N., Baird L., et al. Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome. PLoS One, 2016; 11(9): e0160653.
https://doi.org/10.1371/journal.pone.0160653
PMid:27603779 PMCid:PMC5014411
36. Plowman J.E., Deb-Choudhury S., Bryson W.G., Clerens S., Dyer J.M. Protein expression in orthocortical and paracortical cells of merino wool fibers. J. Agric. Food Chem., 2009; 57(6): 2174-2180.
https://doi.org/10.1021/jf803290h
PMid:19292463
37. Plowman J.E., Paton L.N., Bryson W.G. The differential expression of proteins in the cortical cells of wool and hair fibres. Exp Dermatol, 2007; 16(9): 707-714.
https://doi.org/10.1111/j.1600-0625.2007.00576.x
PMid:17697142
38. Powell B.C., Rogers G.E. Hair keratin: composition, structure and biogenesis. J. Berei­ter-Hahn. Springer, 1986; 695-721.
https://doi.org/10.1007/978-3-662-00989-5_34
39. Rafik M.E., Doucet J., Briki F. The intermediate filament architecture as determined by X-ray diffraction modelling of hard α-keratins. Biophys J, 2004; 86: 3893-39.
https://doi.org/10.1529/biophysj.103.034694
PMid:15189886 PMCid:PMC1304291
40. Rivett D.E., Ward S.W., Belkin L.M., Ramshaw J.A.M., Wilshire J.F.K. The Lennox Legacy. CSIRO Publishing; Collingwood, VIC, Australia: 1996. Keratin and Wool Research.
https://doi.org/10.1071/9780643105072
41. Rogers G. Laser capture microscopy in a study of expression of structural proteins in the cuticle cells of human hair. Exp Dermatol, 2009; 18: 541-547.
https://doi.org/10.1111/j.1600-0625.2008.00825.x
PMid:19220452
42. Sando L., Kim M., Colgrave M.L., Ramshaw J.A.M., Werkmeister J.A., Elvin C.M. Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. J Biomed Mater Res A, 2010; 95(3): 901-911.
https://doi.org/10.1002/jbm.a.32913
PMid:20845488
43. Shi B., Lu X., Sun D., Cao M. The Mechanism of Oxidative Unhairing Using Hydrogen Pero­xide. Journal of the American Leather Chemists Association, 2003; 98: 185-192.
44. Sierpinski P., Garrett J., Ma J., Apel P., Klorig D., Smith T., Koman L.A., Atala A., Van Dyke M. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials, 2008; 29: 118-128.
https://doi.org/10.1016/j.biomaterials.2007.08.023
PMid:17919720
45. Swift J.A., Smith J.R. Atomic force microscopy of human hair. Scanning, 2000; 22(5): 310-318.
https://doi.org/10.1002/sca.4950220506
PMid:11023235
46. Tachibana A., Kaneko S., Tanabe T., Yamauchi K. Rapid fabrication of keratin-hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials, 2005; 26: 297-302.
https://doi.org/10.1016/j.biomaterials.2004.02.032
PMid:15262471
47. Tachibana A., Nishikawa Y., Nishino M., Kaneko S., Tanabe T., Yamauchi K. Modified keratin sponge: Binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng, 2006; 102: 425-429.
https://doi.org/10.1263/jbb.102.425
PMid:17189169
48. Tanabe T., Okitsu N., Tachibana A., Yamauchi K. Preparation and characterization of keratin-chitosan composite film. Biomaterials, 2002; 23: 817-825.
https://doi.org/10.1016/S0142-9612(01)00187-9
49. Tonin C., Aluigi A., Vineis C., Varesano A., Montarsolo A., Ferrero F. Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films. J Therm Anal Calorim, 2007; 89: 601-608.
https://doi.org/10.1007/s10973-006-7557-7
50. Verma V., Verma P., Ray P., Ray A.R. Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater, 2008; 3: 25007.
https://doi.org/10.1088/1748-6041/3/2/025007
PMid:18458372
51. Wagner R., Kiyohara P. K., Silveira M., Joekes I. Electron microscopic observations of human hair medulla. J Microsc, 2007; 226: 54-63.
https://doi.org/10.1111/j.1365-2818.2007.01747.x
PMid:17381709
52. Wolfram L.J. Human hair: A unique physicochemical composite. J Am Acad Dermatol, 2003; 48: 106-114.
https://doi.org/10.1067/mjd.2003.276
PMid:12789162
53. Wrześniewska-Tosik K., Wawro D., Ratajska M., Stęplewski W. Novel composites with feather keratin. Fibres Text. East. Eur., 2007; 15: 157-162.
54. Yamauchi K., Yamauchi A., Kusunoki T., Kohda A., Konishi Y. Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J. Biomed. Mater. Res.,1996; 31: 439-444.
https://doi.org/10.1002/(SICI)1097-4636(199608)31:4<439::AID-JBM1>3.3.CO;2-5
55. Zahn H. Jolles P., Hocker H. Formation and Structure of human hair. Birkhauser Verlag, Basel, Switzerland, 1997. Р. 59-148.
56. Zoccola M., Aluigi A., Vineis C., Tonin C., Ferrero F., Piacentino M.G. Study on cast membranes and electrospun nanofibers made from keratin/fibroin blends. Biomacromolecules, 2008; 9: 2819-2825.
https://doi.org/10.1021/bm800579a
PMid:18798669




DOI: http://dx.doi.org/10.30970/sbi.1302.600

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Studia biologica