Biol. Stud. 2019: 13(2); 99–116 • DOI: https://doi.org/10.30970/sbi.1302.596

BIOLOGICALLY ACTIVE PHENOL AND INDOLE DERIVATIVES OF TERRESTRIAL ARTHROPODS: ELECTROPHYSIOLOGICAL AND CHEMICAL CHARACTERISTICS

O. M. Klyuchko

Abstract


Toxins-antagonists of glutamatergic synapses were found in venoms of different terrestrial Arthrpopodae, both Insecta and Aranei. Chemical structures of some of them were described, and a majority of such substances are derivatives of phenol and indole. They are used successfully for electrophysiological investigations of membrane structures, and present review is devoted to some results of such studies that may be useful for laboratory investigations. Here, we described chemical structure of some toxins, as well as the results of electrophysiological registration of activities of different venoms and toxins of Arthropodae. Hypotheses that explain physiological effects of the substances – antagonists of glutamate receptors depending on the peculiarities of their chemical structures are suggested. The role of different sites of toxins’ molecules in blocking of glutamate receptors is discussed. The information about venoms’ components of Insecta family Sphecidae (Philanthus triangulum), and of some Araneidae spider species of Argiope, Araneus, Nephila genera is also presented.

 

Keywords: Arthropods’ venoms, toxins, receptor antagonists, transmembrane electric current

Full Text:

PDF

References


1. Abe T., Miwa A. Effects of a spider toxin on the glutaminergic synapse of lobster muscle. J. Physiol., 1988; 389: 243-252.
https://doi.org/10.1113/jphysiol.1983.sp014714
PMid:6310085 PMCid:PMC1199159
2. Akaike N., Kawai N., Kiskin N.I., Kljuchko E.M., Krishtal O.A., Tsyndrenko A.Ya. Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons. Neurosci. Lett., 1987; 79: 326-330.
https://doi.org/10.1016/0304-3940(87)90453-8
3. Akhunov A., Chernetsky I.I., Sadykov A.S. Biochemical characteristics of some arthropods venoms of Central Asia. Dokl. AN USSR, 1985; 285(4): 1009-1011. (In Russian)
4. Antonov S.M., Grishin E.V., Magazanik L.G., Shupliakov О.V., Vesselkin N.P., Volkova T.M. Argiopin blocks the glutamate responses and sensomotor transmission in motoneurones of isolated frog spinal cord. Neurosci. Lett., 1987; 83(1,2): 179-184.
https://doi.org/10.1016/0304-3940(87)90237-0
5. Aramaki Y., Yashuhara T., Higashijima T., Yoshioka M., Miwa A. Kawai N., Nakajima T. Che­mi­cal characterization of spider toxins JSTX and NSTX. Proc. Japan Academy, 1986; 62(9): 1012-1014.
https://doi.org/10.2183/pjab.62.359
6. Ashe J.H., Cox C.L., Adams M.E. Argiotoxin 636 blocks excitatory synaptic transmission in rat hippocampal neurons. Brain Res., 1989; 480(1/2): 234-241.
https://doi.org/10.1016/0006-8993(89)91587-4
7. Atkinson P.K. Some studies or the oedematogenic action of the verom or funnel web spiders (Atrax species). Aust. J. Exp. Biol. Med. Sci., 1986; 64(5): 453-464.
https://doi.org/10.1038/icb.1986.48
PMid:3579739
8. Bateman A., Boden P., Dell A., Duce I.R., Quicke D.L., Usherwood P.N.R. Postsynaptic block of a glutaminergic synapse by low molecular weight fraction of spider venom. Brain Res., 1985; 339(2): 237-244.
https://doi.org/10.1016/0006-8993(85)90088-5
9. Boden P., Bycroft B.W., Chabra S.R., Chiplin J., Crowley P.J., Grout R.J., King T.J., McDo­nald E., Rafferty P., Usherwood P.N.R. The action of natural and synthetic isomers of quisqualic acid at a well-defined glutamatergic synapse. Brain Res., 1986; 385(2): 205-211.
https://doi.org/10.1016/0006-8993(86)91065-6
10. Bowers C., Phillips H.S., Lee P., Jan I.N., Jan L.Y. Identification and purification of an irrever­sible presynaptic neurotoxin from the venom of the spider Hololena curta . Proc. Natl. Acad. Sci. USA, 1987; 84(10): 8506-8510.
https://doi.org/10.1073/pnas.84.10.3506
PMid:3033650 PMCid:PMC304900
11. Branton W.D., Kolton L., Jan I.N., Jan L.I. Neurotoxins from Plectreurus spider venom are potent presynaptic blockers in Drosophyla. J. Neurosci., 1987; 7(12): 4195-4200.
https://doi.org/10.1523/JNEUROSCI.07-12-04195.1987
PMid:2826721 PMCid:PMC6569098
12. Budd T., Clinton P., Dell A., Duce I.R., Johnson S.J., Quicke D.L.J., Usherwood P.N.R., Usoh G. Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Res., 1988; 448(2): 30-39.
https://doi.org/10.1016/0006-8993(88)91098-0
13. Catterall W. Neurotoxins as allosteric modifiers of voltage-sensitive sodium channels. Adv Cyto­pharmacol., 1979; 3: 305-316.
14. Cavalieri M., D'Urso I., Lassa A., Pierdominici E., Robello H., Grusso A. Characterisation and some properties of the venom gland extract of a theriid spider (Steatoda paukulliana) frequently mistaken for black widow spider (Latrodectus tredecimguttatus). Toxicon., 1987; 25(9): 965-974.
https://doi.org/10.1016/0041-0101(87)90159-0
15. Chanturia A.N., Mironov S.L., Sokolov Yu.V. The energy profile of the channel formed by latrotoxin in bilayer phospholipid membrane. Ukr. Biochem. Journal, 1986; 58(1): 48-56. (In Russian)
16. Chemistry and Pharmacology. The Alkaloids. Ed. G.A. Cordell, A. Brossi. USA: Academic Press, 1994. 280 p.
17. Early S.L., Michaelis E.K. Presence of protein and glutamate as major constituents of the venom of the spider Araneus gemma. Toxicon., 1987; 25(4): 433-442.
https://doi.org/10.1016/0041-0101(87)90077-8
18. Elin E.A., Macedo V.F., Onoprienko V.V., Osokina N.E., Tikhomirova O.V. Synthesis of argiopin. Bioorg. Chemistry, 1988; 14(5): 704-706. (In Russian)
19. Friedel T., Nentwig W. Immobilising and lethal effects of spider venoms on the cockroach and the common mealbeetle. Toxicon., 1989; 27(3): 305-316.
https://doi.org/10.1016/0041-0101(89)90178-5
20. Fortschritte der Chemie organischer Naturstoffe. In: Progress in the Chemistry of Organic Natural Products. Ed. W. Herz, G.W. Kirby, R.E. Moore, W. Steglich, Ch. Tamm. USA: Springer Science & Business Media, 2012; 66. 332 p.
21. Gration K.A.F., Clark R.B., Usherwood P.N.R. Three types of glutamate receptor on junktio­nal membrane of locust muscle fibers. Brain Res., 1979; 171(2): 360-364.
https://doi.org/10.1016/0006-8993(79)90343-3
22. Grishin E.V., Volkova T.M., Arseniev A.S. Antagonists of glutamate receptors from the venom of Argiope lobata spider. Bioorganicheskaya Khimiya, 1988; 14(7): 883-892. (In Russian)
23. Grishin E.V., Volkova T.M. Arsenyev A.S., Reshetova O.S., Onoprienko V.V., Magazanik L.G., Antonov S.M., Fedorova I.M. Structural-functional characterization of argiopin-an ion channel blocker from the venom of spider Argiope lobata. Bioorg Khim., 1986; 12(8): 1121-1124. (In Russian)
24. Hagiwara K., Aramaki Y., Shimazaki K., Kawai N., Nakajima T. Iodinated Joro toxin (JSTX-3). Its struc­ture and binding to the lobster neuromuscular synapse. Chem Pharm Bull, 1988; 36(3): 1233-1236.
https://doi.org/10.1248/cpb.36.1233
PMid:3409406
25. Halliwell J.V., Othman J.B., Pelchen-Matthews A., Dolly J. O. Central action of dendrotoxin: selective reduction of transient K conductance in hippocampus and binding to localized acceptors. PNAS, 1986; 83(2): 493-497.
https://doi.org/10.1073/pnas.83.2.493
PMid:2417246 PMCid:PMC322886
26. Hashimoto Y., Endo Y., Shudo K., Aramaki Y., Kawai N., Nakajima T. Synthesis of spider toxin JSTX-3 and its analogs. Tetrahedron Letters, 1987; 28(30): 3511-3514.
https://doi.org/10.1016/S0040-4039(00)96340-8
27. Himmelreih N.G., Pivneva T.A., Lishko V.K., Ivanov A.P. On the calcium permeability of latrotoxin-induced synaptosomes. Ukr. Biochem. Journal, 1987; 59(2): 39-44. (In Russian)
28. Jackson H., Usherwood F.N.R. Spider toxins as tools for dissecting elements of excitatory amino acids transmission. Trends Neurosci., 1988; 11(6): 278-283.
https://doi.org/10.1016/0166-2236(88)90112-9
29. Jankovic J., Albanese A., Atassi M.Z., Dolly J.O., Hallett M., Mayer N.H. Botulinum Toxin E-Book: Therapeutic Clinical Practice and Science. USA: Elsevier Health Sciences, 2009. 512 p.
30. Kawai N., Miwa A., Abe T. Spider venom contains specific receptor blocker of glutaminergic synap­ses. Brain Res., 1982; 247(1): 169-171.
https://doi.org/10.1016/0006-8993(82)91044-7
31. Kawai N., Miwa A., Abe T. Effect of spider toxin on glutaminergic synapses in the mammalian brain. Biomed. Res., 1982; 3(3): 353-355.
https://doi.org/10.2220/biomedres.3.353
32. Kawai N., Miwa A., Abe T. Blood of glutamate receptors by a spider toxin. In: Maridel P., DeFendis F.V. (Ed.) From Molecular Pharmacology to Behavior. New York: Raven Press, 1983: 30-34.
33. Kawai N., Yamagishi S., Saito M., Furuya K. Blockade of synaptic transmission in the squid giant synapse by a spider toxin (JSTX). Brain Res., 1983; 278(2): 346-349.
https://doi.org/10.1016/0006-8993(83)90269-X
34. Kawai N., Miwa A., Saito M., Pan-How H., Yosioka M. Spider toxin (JSTX) action on the glutamate synapse. J. Physiol. (Paris), 1984; 79(4): 228-231.
35. Kerry C.J., Ramsey R.L., Sansom M.S.P., Usherwood P.N.R. Single channel studies of non-comretitive antagonism of a quisqualate sensitive glutamate receptor by argiotoxin 636 - a fraction isolated from orb-web spider venom. Brain Res., 1988; 459(2): 312-327.
https://doi.org/10.1016/0006-8993(88)90647-6
36. Kiskin N.I., Klyuchko E.M., Kryshtal O.A., Tsyndrenko A.Ya., Akaike N., Kawai N. Blocking action of Nephila clavata spider toxin on ionic currents activated by glutamate and its agonists in isolated hippocampal neurons. Neurophysiology, 1989; 21(2): 110-116. (In Russian)
https://doi.org/10.1007/BF01056967
37. Kits K.S., Pick T. Action of the polyamine b-philantotoxin on neuromuscular transmission in insects. Neuropharm., 1986; 25(10): 1089-1093.
https://doi.org/10.1016/0028-3908(86)90155-3
[DOI: https://doi.org/10.1016/0028-3908(86)90155-3; PMID: 2431342; Google Scholar]
38. Klyuchko O.M. Information and computer technologies in biology and medicine. Kyiv: NAU-druk, 2008. 252 p. (In Ukrainian)
39. Klyuchko O.M., Klyuchko Z.F. Electronic databases of Arthropods: methods and applications. Biotechnologia Acta, 2018: 11(4); 28-49.
https://doi.org/10.15407/biotech11.04.028
40. Klyuchko O.M. Investigation of chemical substances of terrestrial arthropods. Studia Biolo­gica, 2019: 13(1); 129-144.
https://doi.org/10.30970/sbi.1301.594
41. Klyuchko O.M. Electronic expert systems for biology and medicine. Biotechnologia Acta, 2018; 11(6): 5-28.
https://doi.org/10.15407/biotech11.06.005
42. Klyuchko O.M. Biotechnical information systems for monitoring of chemicals in environment: biophysical approach. Biotechnologia Acta, 2019; 12(1): 5-28.
https://doi.org/10.15407/biotech12.01.005
43. Klyuchko O.M. Method for monitoring of chemicals influence on bioorganisms in few time intervals. Patent UA 134575 U; G01N33/00, C12N 15/00, A61P 39/00. Priority: 14.12.2018, u201812443, - Issued: 27.05.2019, Bull. 10, 12 p. (In Ukrainian)
44. Klyuchko O.M., Biletsky A.Ya., Lizunov G.V., Shutko V.N. Method for application of the system of large-scale monitoring of bioobjects with possibility of their radar control. Patent UA 134576 U; МПК G01N33/00, A61B 5/05, G01N 33/50, C12Q 1/02, G01S 13/00. Priority: 14.12.2018, u201812444, - Issued: 27.05.2019, Bull. 10, 16 p. (In Ukrainian)
45. Klyuchko O.M. Method of application of biotechnical monitoring system for bioindicators' accounting with biosensor and sub-system for optical registration. - Patent UA 129987 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.2018, u201804662, Issued: 26.11.2018, Bull. 22, 11 p. (In Ukrainian)
46. Klyuchko O.M. Method of cells' dissociation. - Patent UA 130672 U, G01N 33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804668, Issued: 26.12.2018, Bull. 24, 7p. (In Ukrainian)
47. Klyuchko O.M. Method of qualitative analysis of chemical substances. Patent UA 131016 U, G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805174, Issued: 10.01.2019, Bull. 1, 9 p. (In Ukrainian)
48. Klyuchko O.M.. Method for monitoring of chemicals influence on bioorganisms in few time intervals. Patent UA 134575 U; G01N33/00, C12N 15/00, A61P 39/00. Priority: 14.12.2018, u201812443, - Issued: 27.05.2019, Bull. 10, 10 p. (In Ukrainian)
49. Klyuchko O.M., Biletsky A.Ya., Lizunov G.V., Shutko V.N. Method of electrical signals gene­rating by bio-elements in technical hybrid system. Patent UA 134574 U; A01N 1/02, G01N 33/00, A61N 1/32, B82Y 30/00. Priority: 14.12.2018, u201812442, - Issued: 27.05.2019, Bull. 10, 10 p. (In Ukrainian)
50. Klyuchko O.M., Biletsky A.Ya., Lizunov G.V., Shutko V.N. Method for application of the system of large-scale monitoring of bioobjects with possibility of their radar control. Patent UA 134576 U; МПК G01N33/00, A61B 5/05, G01N 33/50, C12Q 1/02, G01S 13/00. Priority: 14.12.2018, u201812444, - Issued: 27.05.2019, Bull. 10, 1 p. (In Ukrainian)
51. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.O. Method of bio-sensor test system application. - Patent UA 129923 U, G01N33/00, G01N33/50, C12Q 1/02. Priority: 22.03.2018, u201802896, Issued: 26.11.2018, Bull. 22, 7 p. (In Ukrainian)
52. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.O. Method of application of biotechnical monitoring system with biosensor (biosensor test system). - Patent UA 132245 U; G01N33/00. Priority: 23.03.2018 u201802893, Issued: 25.02.2014, Bull. 4, 7 p. (In Ukrainian)
53. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.O. Method of application of biotechnical monitoring system with biosensor and sub-system for optical registration. - Patent UA 129922 U, G01N33/50. Priority: 22.03.2018, u201802894, Issued: 26.11.2018, Bull. 22, 10 p. (In Ukrainian)
54. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D. Method of application of biotechnical monitoring system with expert subsystem and biosensor. Patent UA 131863 U; G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27.04.18, u201804663, Issued: 11.02.2019, Bull. 3, 7 p. (In Ukrainian)
55. Klyuchko O.M., Biletsky A.Ya., Navrotskyi D.A. Method of quantitative analysis of chemical substances. Patent UA 131524 U; G01N33/50, G01N21/78, C12Q 1/60G01N33/50, G01N21/78, C12Q 1/60. Priority: 11.05.2018, u201805175, Issued: 25.01.2019, Bull. 2, 10 p. (In Ukrainian)
56. Klyuchko O.M., Biletsky A.Ya. Method of qualitative analysis of hydrocarbons with harmful and toxic effect on bioobjects. Patent UA 133676 U; G01N 33/50, G01N 21/78. Priority: 06.06.2018, u201806342, Issued: 25.04.2019, Bull. 8, 10 p. (In Ukrainian)
57. Klyuchko O.M., Biletsky A.Ya. Method of qualitative analysis of chemical substances for the influence on electrical currents in bioobjects. Patent UA134142 U; G01N 33/50, G01N 21/78, C12Q 1/60. Priority: 06.06.2019, u201806345, Issued: 10.05.2019, Bull. 9, 10 p. (In Ukrainian)
58. Kostyuk P.G., Kryshtal O.A. Mechanisms of electrical excitability of the nerve cell. M: Nauka, 1981. 208 p. (In Russian)
59. Kusano Tomonobu, Suzuki Hideyuki. Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism.USA: Springer, 2015. 336 p.
https://doi.org/10.1007/978-4-431-55212-3
60. Lee C.Y. Resent advances in chemistry and pharmacology of snake toxins. In: Advances in Cytophormacology. New York: Raven Press, 1979: 1-16.
61. Magazanik L.G., Antonov S.M., Gmiro V.E. Mechanisms of activation and blocking of the postsynaptic membrane sensitive to glutamate. Biological Membranes, 1984; 1(2): 130-140. (In Russian)
62. Magazanik L.G., Antonov S.M., Fedorova I.M., Grishin E.V. The action of Agriope lobata spider venom and its low molecular weight component - argiopin on postsynaptic membranes. Biological Membranes, 1986; 3(12): 1204-1219. (In Russian)
63. Magura I.S. Problems of electrical excitability of neuronal membrane. Kyiv: Naukova Dumka, 1981. 208 p. (In Russian)
64. Martin M.F., Rochad H. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon, 1986; 24(11-12): 1131-1139.
https://doi.org/10.1016/0041-0101(86)90139-X
65. Martin M.F., Rochat H., Marchot P., Bougis P.E. Use of high performance liquid chromatography to demonstrate quantitative variation in components of venom from the scorpion Androctonus australis Hector. Toxicon, 1987; 25(5): 569-573.
https://doi.org/10.1016/0041-0101(87)90293-5
66. Matsuoka I., Syuto B., Kurinara K., Kubo S. Cytotoxic action of Clostridium botulinum type C, toxin on neurons of central nervus system in dissociated culture. Jap. J. Med. Sci. Biol., 1986; 39(5-6): 247.
67. Michaelis E.K., Michaelis M.L., Stormann T.M., Chittenden W.L., Grubbs R.D. Purification and molecular characterization of the brain synaptic membrane glutamate-binding protein. J. Neurochem., 1983; 30: 1742-1747.
https://doi.org/10.1111/j.1471-4159.1983.tb08150.x
PMid:6133916
68. Michaelis E.K., Galton N., Early S.L. Spider venoms inhibit L-glutamate binding to brain synaptic menbrane receptors. Proc. Natl. Acad. Sci. USA, 1984; 81: 5571-5574.
https://doi.org/10.1073/pnas.81.17.5571
PMid:6147850 PMCid:PMC391748
69. Miwa A., Kawai N. Presynaptic glutamate receptor - possible involvement of K channel. Brain Res., 1986; 385(1): 161-64.
https://doi.org/10.1016/0006-8993(86)91559-3
70. Miwa A., Kawai N., Saito M., Pan-Hou H., Yosioka M. Effect of spider toxin (JSTX) on excitatory postsynaptic current at neuromuscular synapse of spiny lobster. J. Neurophys., 1987; 58(2): 216-220.
https://doi.org/10.1152/jn.1987.58.2.319
PMid:3655870
71. Miwa A., Kawai N., Ui M. Pertussis toxin blocks presynaptic glutamate receptor - a novel "glutamate" receptor in lobster neuromuscular synapse. Brain Res., 1987; 416(1): 162-165.
https://doi.org/10.1016/0006-8993(87)91510-1
72. Mylecharane E.J., Spence I., Sheumack D.D., Claassens R., Howden M.E.M. Action of robustoxin, a neurotoxic polypeptide from the venom of the male funnel-web spider (Atrax robustus) in anaesthetized monkeys. Toxicon, 1989; 24(4): 481-492.
https://doi.org/10.1016/0041-0101(89)90211-0
73. Narahashi T. Modulation of neurve membrane sodium channe1s by neurotoxins. In: Advan­ces in Cytopharmacology. New York: Raven Press, 1979: 293-304.
74. Pan-Hou H., Suda Y. Molecular action mechanism of spider toxin on glutamate receptor: role of 2,4-dihydroxyphenylacetic acid in toxin molecule. Brain Res., 1987; 418(1): 198-200.
https://doi.org/10.1016/0006-8993(87)90981-4
75. Pan-Hou H., Suda Y., Sumi M., Yoshioka M., Kawai N. Inhibitory effect of 2,4-dihydroxyphenylacetylasparagine, a common moiety of spider toxins on glutamate binding to rat brain synaptic membranes. Neurosci. Lett., 1987; 81: 199-203.
https://doi.org/10.1016/0304-3940(87)90365-X
76. Pan-Hou H., Suda Y., Sumi M., Yoshioka M., Kawai N. A spider toxin (JSTX) inhibits L-gluta­nate uptake by rat brain synaptosomes. Brain Res., 1989; 476(2): 354-357.
https://doi.org/10.1016/0006-8993(89)91258-4
77. Piek T. Insect venoms and toxins. In: Kerkut G. A. (Ed.) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press, 1987; 11: 595-635.
https://doi.org/10.1016/B978-0-08-030812-8.50019-8
78. Saito M., Kawai N., Miwa A., Pan-Hou H., Yoshioka M. Spider toxin (JSTX) blocks glutamate synapse in hippocampal pyramidal neurons. Brain Res., 1985; 346(2): 397-399.
https://doi.org/10.1016/0006-8993(85)90878-9
79. Schmidt J., Blum M.S., Overal W.L. Comparative ensymology of venoms from stringing Hymenoptera. Toxicon, 1986; 24(9): 207-291.
https://doi.org/10.1016/0041-0101(86)90091-7
80. Shuplyakov O.V., Antonov S.M., Veselkin N.P., Magazanik L.G. The ability of argiopin to block glutamatergic synapses in the frog spinal cord. Zhurnal Evoliycion. Biohimii i Fiziologii, 1982; 23(2): 275-276.
81. Skock V.I., Selianko A.A., Derckach V.A. Neuronal cholynoreceptors. M.: Nauka, 1987. 343 p. (In Russian)
82. Soloway S., Wilen S.H. Improved ferric chloride test for phenols. Anal. Chem., 1952; 24(6): 979-983.
https://doi.org/10.1021/ac60066a017
83. Tashmuhamedov B.A. Ion transport through biological membranes and the mechanism of physiologically active substances action. M: Nauka, 1985. 121p. (In Russian)
84. Tashmuchamedov B.A., Makhmudova E.M., Usmanov P.B., Kazakov I. Reconstitution in bilayer lipid membranes of the Crab Potamon Transcaspicum spider venom sensitive glutamate receptors. Gen. Physiol. Biophys., 1985; 4(6): 625-630.
85. Tashmuchamedov B.A., Makhmudova E.M., Usmanov P.B., Kazakov I., Atakuziev B.U. Isolation and reconstruction of glutamate receptors of insects on bilayer membranes. Uzbek. Biological Journal, 1983; 6: 57-58. (In Russian)
86. Tashmuchamedov B.A., Usmanov P.B., Kazakov I., Kalikulov D., Yukelson L.Ya., Ataku­siev B.U. Effects of different spider venoms on artificial and biological membranes. In: Hucho F., Ovchinnicov Y.A. (Ed.) Toxins as Tools in Neurochemistry. Berlin: Walter de Gruyter, 1983: 311-323.
https://doi.org/10.1515/9783110853162-026
87. Teshima T., Wakamiya T., Aramaki Y., Nakajima T., Kawai N., Shiba T. Synthesis of a new neurotoxin NSTX-3 of Papua New Guinean spider. Tetrah. Lett., 1987; 28(30): 3509-3510.
https://doi.org/10.1016/S0040-4039(00)96339-1
88. Tibballs J., Sutherland S. K., Duncan A.W. Effects of male Sydney funnel-web spider venom in a dog and cat. Austr. Vet. J., 1987; 64(2): 63-64.
https://doi.org/10.1111/j.1751-0813.1987.tb16137.x
PMid:3606512
89. Tuychibaev M.U., Tashmuchamedov B.A., Magazanik L.G. New neurotoxin from the venom of the great hornet Vespa orientalis. Uzbek. Biological Journal, 1983; 6: 3-4. (In Russian)
90. Ushkarev Yu.A., Grishin E.V. Karakurt neurotoxin and its interaction with the rat brain receptors. Bioorg. Chemistry, 1986; 12(1): 71-81. (In Russian).
91. Usmanov P.B., Kalikulov D., Shadyeva N., Tashmuchamedov B.A. Action of Agriope lobata spider venom on glutamate and cholineric synapses. Dokl. AN USSR, 1983; 273(4): 1017-18. (In Russian)
92. Usmanov P.B., Kalikulov D., Nasledov G.A., Tashmuchamedov B.A. Effect of Segestria florentina spider venom on the mechanism of inactivation of sodium channels. Biophy­sics, 1985; 30(4): 617-619. (In Russian)
93. Usmanov P.B., Kalikulov D., Shadyeva N.G., Nenilin A.B., Tashmuchamedov B.A. Postsynaptic blo­cking of glutamatergic and cholinergic synapses as a common property of Araneidae spider venoms. Toxicon, 1985; 23(3): 528-531.
https://doi.org/10.1016/0041-0101(85)90038-8
94. Usmanov P.B., Tonkikh A.K., Shadyeva H., Sadykov A.A., Tashmuchamedov B.A. Effect of Agriope lobata spider venom and its components on the binding of L1 H1 glutamate to locust muscle membranes. Ukr. Biochem. Journal, 1988; 60(3): 78-81. (In Russian)
95. Vyklický L.Jr., Krůsek J., Vyklický L., Vyskocil F. Spider venom of Araneus opens and desensitizes glutamate channels in chick spinal cord neurones. Neurosci. Lett., 1986; 68: 227-231.
https://doi.org/10.1016/0304-3940(86)90147-3
96. Zlotkin E. Toxins derived from Arthropod venoms specially affecting insects. In: Kerkut G.A., Gilbert L.I. (Ed.) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Oxford: Pergamon Press, 1985; 10: 499-546.
https://doi.org/10.1016/B978-0-08-030811-1.50021-0
97. Yoshioka M., Narai N., Pan-Hou H., Shimazaki K., Miwa A., Kawai N. Color development upon reaction of ferric ion with the toxin JSTX, a glutamate receptor blocker present in the venom gland of the spider Nephila clavata (Joro spider). Toxicon, 1988; 26(4): 414-416.
https://doi.org/10.1016/0041-0101(88)90011-6




DOI: http://dx.doi.org/10.30970/sbi.1302.596

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Studia biologica