Biol. Stud. 2019: 13(2); 29–40 • DOI: https://doi.org/10.30970/sbi.1302.603

PROKARYOTIC EXPRESSION AND PURIFICATION OF BIOACTIVE DEFENSIN 2 FROM PINUS SYLVESTRIS L.

N. I. Hrunyk, Yu. I. Shalovylo, Yu. M. Yusypovych, I. I. Roman, I. V. Nesmelova, V. A. Kovaleva

Abstract


Plant defensins are highly stable cysteine-rich peptides consisting of 45–54 amino acid residues with a characteristic conservative βαββ structure stabilized by 4–5 disulfide bridges. These peptides are key molecules of innate immune system in plants. They inhibit growth of many phytopathogenic fungi, and some of them exhibit antibacterial acti­vity. Defensins also possess other biological functions. The multifunctional properties of the defensin peptides make them attractive candidates for creation of new remedies with antimicrobial properties. Elucidation of nature of the structural and functional relationships in the antimicrobial peptides is an essential step in the development of drugs with acti­vity against pathogens. Previously, we have purified endogenous and recombinant Scots pine defensin 1 (PsDef1) demonstrating high activity against fungi and bacteria. Importantly, PsDef1 is the first defensin from coniferous plants whose NMR structure and pro­perties have been thoroughly investigated, also by the authors of this work. In this study, we presented the expression and affinity purification of recombinant defensin 2 from Pinus sylvestris L. (PsDef2), whose sequence has 90 % identity to PsDef1. We used pET32/BL21-CodonPlus (DE3)-RIL Escherichia coli expression system to produce large quantities of the recombinant PsDef2 peptide conjugated to thioredoxin (TRX). We found that the highest yield of recombinant protein in its soluble form was obtained at 0.5 mM of isopropyl-β-D-thiogalactoside (IPTG) concentration for 3 h of induction at 25 °С. After isolation of TRX-PsDef2 on HisPurNi-NTA resin, the fusion protein was subjected to proteolytic cleavage by enterokinase. PsDef2 was separated from the proteolytic fragments using the ion exchange on the SP-Sepharose Fast Flow column and a step gradient of 0.05–1 M NaCl. The purity of obtained recombinant PsDef2 was higher than 95 %, as verified by 16.5 % SDS-PAGE. The recombinant peptide PsDef2 showed activity against phytopathogenic Fusarium sporotrichiela fungus and Phythophtora gonapodyides oomycete at 5 µM concentration. The availability of recombinant PsDef2 gives an option not only to examine its antimicrobial properties but to study its structure by spectroscopic methods (circular dichroism, NMR) in order to esta­blish relationships between the structure and function of pine defensins.

 

Keywords: defensins, Scots pine, heterologous expression, protein purification, antimicrobial activity

Full Text:

PDF

References


1. Ali S., Ganai B.A., Kamili A.N., Bhat A.A., Mir Z.A., Bhat J.A., Tyagi A., Islam S.T., Mushtaq M., Yadav P., Rawat S., Grover A. Pathogenesis-related proteins and peptides as promi­sing tools for engineering plants with multiple stress tolerance. Microbiol. Res., 2018; 212-213: 29-37.
https://doi.org/10.1016/j.micres.2018.04.008
PMid:29853166
2. Bloch C., Jr., Richardson M. A new family of small (5 kDa) protein inhibitors of insect alpha-amylases from seeds or sorghum (Sorghum bicolar (L.) Moench.) have sequence homologies with wheat gamma-purothionins. FEBS Lett., 1991; 279: 101-104.
https://doi.org/10.1016/0014-5793(91)80261-Z
3. Dos Santos I.S., Carvalho Ade O., de Souza-Filho G.A., do Nascimento V.V., Machado O.L., Gomes V.M. Purification of a defensin isolated from Vigna unguiculata seeds, its functional expression in Escherichia coli, and assessment of its insect alpha-amylase inhibitory activity. Protein Expr. Purif., 2010; 71: 8-15.
https://doi.org/10.1016/j.pep.2009.11.008
PMid:19948221
4. Egorov T.A., Odintsova T.I., Pukhalsky V.A., Grishin E.V. Diversity of wheat anti-microbial peptides. Peptides, 2005; 26: 2064-2073.
https://doi.org/10.1016/j.peptides.2005.03.007
PMid:16269343
5. Elmorjani K., Lurquin V., Lelion A, Rogniaux H., Marion D. A bacterial expression system revisited for the recombinant production of cystein-rich plant lipid transfer proteins. Biochem Biophys Res Commun, 2004; 316: 1202-1209.
https://doi.org/10.1016/j.bbrc.2004.02.173
PMid:15044113
6. Ermakova E.A., Faizullin D.A., Idiyatullin B.Z. Khairutdinov B.I., Mukhamedova L.N., Tarasova N.B., Toporkova Y.Y., Osipova E.V., Kovaleva V., Gogolev Y.V., Zuev Y.F., Nesmelova I.V. Structure of Scots pine defensin 1 by spectroscopic methods and computational mode­ling. Int. J. Biol. Macromol., 2016; 84: 142-152.
https://doi.org/10.1016/j.ijbiomac.2015.12.011
PMid:26687241
7. Gao A.G., Hakimi S.M., Mittanck C.A., Wu Y., Woerner B.M., DStark M., Shah D.M., Liang J.H., Rommens C.M.T. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 2000; 18: 1307-1310.
https://doi.org/10.1038/82436
PMid:11101813
8. Gazzaneo L.R.S., Pandolfi V., de Jesus A.L.S., Crovella S., Benko-Iseppon A. M., de Freitas A.C. Heterologous expression systems for plant defensin expression: examples of success and pitfalls. Curr Protein Pept Sci., 2017; 18 (4): 391-399.
https://doi.org/10.2174/1389203717666160625070414
PMid:27356942
9. Kaomek M., Mizuno K., Fujinira T., Sriyotha P., Cairna J.R.K. Cloning, expression and characterization of an antifungal chitinase from Leucaena leucocephla De Wit. Biosci. Biotechnol. Biochem., 2003; 67: 667-676.
https://doi.org/10.1271/bbb.67.667
PMid:12784603
10. Khairutdinov B.I., Ermakova E., Yusypovych Y.M., Bessolicina E.K., Tarasova N.B., Topor­kova Y.Y., Kovaleva V., Zuev Y.F., Nesmelova I.V. NMR structure, conformational dynamics, and biological activity of PsDef1 defensin from Pinus sylvestris. Biochimica et biophysica acta. Proteins and proteomics, 2017; 1865(8): 1085-1094.
https://doi.org/10.1016/j.bbapap.2017.05.012
PMid:28528214
11. Kobayashi Y., Sato A., Takashima H., Tamaoki H., Nishimura S., Kyogoku Y., Ikenaka K., Kondo T., Mikoshiba K., Hojo H., Aimoto S., Moroder L. A new -helical motif in membrane active peptides. Neurochem. Internat, 1991; 18: 525-534.
https://doi.org/10.1016/0197-0186(91)90151-3
12. Kovaleva V.A., Kiyamova R.G., Cramer R., Krynytskyy H. T., Gout I.T., Filonenko V.V., Gout R. Purification and molecular cloning of antimicrobial peptides from Scots pine seedlings. Рeptides, 2009; 30(12): 2136-2143.
https://doi.org/10.1016/j.peptides.2009.08.007
PMid:19683554
13. Kovaleva V.A., Krynytskyy H.T., Gout I.I., Gout R.T. Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1. Appl. Microbiol. Biotechnol., 2011; 89(4): 1093-1101.
https://doi.org/10.1007/s00253-010-2935-2
PMid:20957359
14. Kovalyova V.A., Gout I.T. Molecular cloning and characterization of Scotch pine defensin 2. Cytology and Genetics, 2008; 42(6): 408-412.
https://doi.org/10.3103/S0095452708060091
15. Kovalyova V.A., Gout I.T., Kiyamova R.G., Filonenko V.V., Gout R.T. Cloning and analysis of defensin 1 cDNA from Scots pine. Biopolymers and Cell, 2007; 23(5): 398-404.
https://doi.org/10.7124/bc.000779
16. Lacerda A.F., Vasconcelos É.A.R., Pelegrini P.B., Grossi de Sa M.F. Antifungal defensins and their role in plant defense. Frontiers in Microbiology, 2014; 5: 116.
https://doi.org/10.3389/fmicb.2014.00116
PMid:24765086 PMCid:PMC3980092
17. La Vallie E.R., Di Blasio-Smith E.A., Collins-Racie L.A., Lu Z., McCoy J.M. Thioredoxin and related proteins as multifunctional fusion tags for soluble expression in E. coli. Methods MolBiol, 2003; 205: 119-140.
https://doi.org/10.1385/1-59259-301-1:119
PMid:12491883
18. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970; 227: 680-685.
https://doi.org/10.1038/227680a0
PMid:5432063
19. Lay F.T, Anderson M.A. Defensins - components of the innate immune system in plants. Curr. Protein Pept Sci., 2005; 6: 85-101.
https://doi.org/10.2174/1389203053027575
PMid:15638771
20. Luo J.S., Gu T.Y., Yang Y., Zhang Z.H. A non-secreted plant defensin AtPDF26 conferred cadmium tolerance via its chelation in Arabidopsis. Plant Molecular Biology, 2019; 100(4-5): 561-569.
https://doi.org/10.1007/s11103-019-00878-y
PMid:31053987
21. Mirouze M., Sels J., Richard O., Czernic P., Loubet S., Jacquier A., Francois I.E., Cam­mue B.P., Lebrun M., Berthomieu P., Marques L. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Plant J., 2006; 47: 329-42.
https://doi.org/10.1111/j.1365-313X.2006.02788.x
PMid:16792695
22. Nordström R., Malmsten M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci. 2017; 242: 17-34.
https://doi.org/10.1016/j.cis.2017.01.005
PMid:28159168
23. Parisi K., Shafee T.M.A., Quimbar P., vander Weerden N.L., Bleackley M.R., Anderson M.A. The evolution, function and mechanisms of action for plant defensins. Semin. CellDev. Biol., 2018; 5(6): 1-12.
24. Pervieux I., Bourassa M., Laurans F., Hamelin R.C., Seguin A. A spruce defensin showing strong antifungal activity and increased transcript accumulation after wounding and jasmonate treatments. Physiological and Molecular Plant Pathology, 2004; 64: 331-341.
https://doi.org/10.1016/j.pmpp.2004.09.008
25. Picart P., Pirttilä A.M., Raventos D. Identification of defensin-encoding genes of Picea glauca: characterization of PgD5, a conserved spruce defensin with strong antifungal activity. BMC Plant Biol., 2012; 12: 180.
https://doi.org/10.1186/1471-2229-12-180
PMid:23035776 PMCid:PMC3502332
26. Sher Khan R., Iqbal A., Malak R., Shehryar K., Attia S., Ahmed T., Khan M.A., Arif M., Mii M. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech., 2019; 9: 192-204.
https://doi.org/10.1007/s13205-019-1725-5
PMid:31065492
27. Sinha M., Singh R.P., Kushwaha G.S., Iqbal N., Singh A., Kaushik S., Kaur P., Sharma S., Singh T.P. Current overview of allergens of plant pathogenesis related protein families. Sci. World J., 2014; 2014: 543195.
https://doi.org/10.1155/2014/543195
PMid:24696647 PMCid:PMC3947804
28. Sinha R, Shukla P. Antimicrobial Peptides: Recent insights on biotechnological interventions and future perspectives. Protein Pept Lett., 2019; 26 (2): 79-87.
https://doi.org/10.2174/0929866525666181026160852
PMid:30370841 PMCid:PMC6416458
29. Sitaram N. Antimicrobial peptides with unusual amino acid compositions and unusual structures. Curr. Med. Chem., 2006; 13: 679-696.
https://doi.org/10.2174/092986706776055689
PMid:16529559
30. Skolotneva E. S., Salina E. A. Resistance mechanisms involved in complex immunity of wheat against rust diseases. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding, 2019; 23(5): 542-550. (In Russian)
https://doi.org/10.18699/VJ19.523
31. Wijaya R., Neumann G.M., Condron R., Hughes A.B., Polya G.M. Defense proteins from seed of Сassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci., 2000; 159: 243-255.
https://doi.org/10.1016/S0168-9452(00)00348-4
32. Yount N. Y., and Yeaman M. R. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. U.S.A., 2004; 101: 7363-7368.
https://doi.org/10.1073/pnas.0401567101
PMid:15118082 PMCid:PMC409924
33. Yount N.Y., Andrés M.T., Fierro J.F., Yeaman M.R. The gamma-core motif correlates with antimicrobial activity in cysteine-containing kaliocin-1 originating from transferrins. Biochim. Biophys. Acta, 2007; 1768: 2862-2872.
https://doi.org/10.1016/j.bbamem.2007.07.024
PMid:17916323
34. Zhu S., Gao B., Tytgat J. Phylogenetic distribution, functional epitopes and evolution of the CSab superfamily. Cell Mol. Life Sci., 2005; 62: 2257-2269.
https://doi.org/10.1007/s00018-005-5200-6
PMid:16143827




DOI: http://dx.doi.org/10.30970/sbi.1302.603

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Studia biologica