EVALUATION OF METALLOTHIONEIN RESPONSE IN LYMNAEA STAGNALIS POND SNAIL EXPOSURED TO TRACE METALS AND THIOCARBAMATE FUNGICIDE

L. L. Gnatyshyna


DOI: http://dx.doi.org/10.30970/sbi.1301.585

Abstract


Pulmonate mollusks posses high uptake rates of dissolved metals and their bonding, mainly Cd, Zn and Cu by the metal-buffering protein, metallothionein (MT). However, most investigations are focused at the terrestrial species, whereas aquatic snails are studied scantly. Therefore, the main goal of our study was to evaluate a specificity of metal-binding function of the metallothionein in Lymnaea stagnalis pond snail. The mollusks were subjected to typical metallothionein inducers Cd2+, 15 mg·L-1;Cu2+, 10 mg·L-1; Zn2+, 130 mg·L-1 and oxidative stress inducer thiocarbamate Tattoo fungicide, 91 mg L−1 during 14 days. Applied concentrations corresponded to the ecologically rele­vant concentrations. Metal concentrations and metallothionein characteristics in a digestive gland were analyzed. In present study, all exposures to metals caused the elevation of the concentration of metals (Zn, Cu or Cd) in tissues and the total level of metallothionein detected from their thiols (MT-SH). Particularly, Zn level in tissues was increased by ~2−3 times in all cases of the exposure to metals. Cd increased the level of metal-contained form of the metallothionein (MT-Me). Tattoo affected the levels of metals and MT-SH in the tissue to low extent but caused the redistribution of metals between the metallothionein (increase) and other compounds. The distortion of the elution profile of metallothionein on the DEAE-cellulose was shown at each exposure. To summarize, snails demonstrated a wide spectrum of responses and juxtaposition of different characteristics depending on the exposure. The responses to metals and Tattoo were distinguished by the detection of metallothionein concentration. The primary reasons for the effect of thiocarbamate on the metal homeostasis needs further investigations.


Keywords


pulmonate mollusk, trace metals, thiocarbamate fungicide, toxicity

Full Text:

PDF

References


1. Amiard J.C., Amiard-Triquet C., Barka S., Pellerin J., Rainbow P.S. Metallothioneins in aqua­tic invertebrates: Their use as biomarkers. Aquat. Toxicol., 2006; 76(2): 160-202.
CrossrefPubMed Google Scholar

2. Beukelman T.E., Lord S.S. The standard addition technique in flame spectrometry. Appl. Spectrosc., 1960; 14(1): 12-17.
Crossref Google Scholar

3. Bhagat J., Ingole B.S., Singh N. Glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: A review. Invert. Surviv. J., 2016; 13.
Google Scholar

4. Calviello G., Piccioni E., Boninsegna A., Tedesco B., Maggiano N., Serini S., Wolf F.I., Palozza P. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol. Appl. Pharmacol., 2006; 211: 87-96.
Crossref PubMed Google Scholar

5. Dallinger R., Wang Y., Berger B., Mackay E.A., Kägi J.H.R. Spectroscopic characterization of me­tallothionein from the terrestrial snail, Helix pomatia. Eur. J. Biochem., 2001; 268: 4126-4133.
Crossref PubMed Google Scholar

6. Desouky M.M. Metallothionein is up-regulated in molluscan responses to cadmium, but not aluminum, exposure. J. Basic Appl. Zool., 2012; 65 (2): 139-143.
Crossref Google Scholar

7. Domico L.M., Cooper K.R., Bernard L.P., Zeevalk G.D. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology, 2007; 28: 1079-1091.
Crossref PubMed Google Scholar

8. Falfushynska H., Gnatyshyna L., Stoliar O. Effect of in situ exposure history on the molecular responses of freshwater bivalve Anodonta anatina (Unionidae) to trace metals. Ecotoxicol. Environ. Saf., 2013, 89: 73-83.
Crossref PubMed Google Scholar

9. Falfushynska H., Gnatyshyna L., Stoliar O. In situ exposure history modulates the molecular responses to carbamate fungicide Tattoo in bivalve mollusk. Ecotoxicology, 2013; 22 (3): 433-445.
Crossref PubMed Google Scholar

10. Falfushynska H., Gnatyshyna L., Stoliar O., Mitina N., Skorokhoda T., Filyak Ye., Zaichenko A., Stoika R. Evaluation of biotargeting and ecotoxicity of Co2+-containing nanoscale polymeric complex by applying multi-marker approach in bivalve mollusk Anodonta cygnea. Chemo­sphere, 2012; 88: 925-936.
CrossrefPubMed Google Scholar

11. Falfushynska H., Gnatyshyna L., Yurchak I., Sokolova I., Stoliar O. The effects of zinc nano­oxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat. Toxicol., 2015; 162: 82-93.
Crossref PubMed Google Scholar

12. Falfushynska H.I., Gnatyshyna L.L., Fedoruk O.O., Stoliar O.B. Variability of metallothioneins responses in freshwater mussels exposed to trace metals or thiocarbamate pesticide. Sci. Lett. J., 2014; 3: 67.

13. Gnatyshyna L., Falfushynska H., Bodilovska O., Oleynik O., Golubev A., Stoliar O. Metallothionein and glutathione in Lymnaea stagnalis determine the specificity of responses on the effects of ionising radiation. Radioprotection, 2012; 47(2): 231-242.
Crossref Google Scholar

14. Gnatyshyna L.L., Fal'fushynska H.I., Golubev A.P., Dallinger R., Stoliar O.B. Role of Metallothioneins in Adaptation of Lymnaea stagnalis (Mollusca: Pulmonata) to Environment Pollution. Hydrobiol. J., 2011; 47(5): 56-66.
Crossref Google Scholar

15. Golubev A., Afonin V., Maksimova S., Androsov V. The current state of pond snail Lymnaea stagnalis populations from water reservoirs of the Chernobyl nuclear accinent zone. Radioprotection, 2005; 40(S1): 511-517.
Crossref Google Scholar

16. Gonçalves S.F., Davies S.K., Bennet M., Raab A., Feldmann J., Kille P., Loureiro S., Spurgeon D., Bundy J.G. Sub-lethal cadmium exposure increases phytochelatin concentrations in the aquatic snail Lymnaea stagnalis. Sci. Total Environ., 2016; 568: 1054-1058.
Crossref PubMed Google Scholar

17. Guerlet E., Ledy K., Giambérini L. Field application of a set of cellular biomarkers in the digestive gland of the freshwater snail Radix peregra (Gastropoda, Pulmonata). Aquat. Toxicol., 2006; 77(1): 19-32.
Crossref PubMed Google Scholar

18. Hispard F., Schuler D., deVaufleury A., Scheifler R., Badot P.M., Dallinger R. Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail Helix aspersa (Gastropoda, Pulmonata). Environ. Toxicol. Chem., 2008; 27(7): 1533-1542.
Crossref PubMed Google Scholar

19. Hylland K. Biological effects of contaminants: Quantification of metallothionein (MT) in fish liver tissue. Denmark: ICES Techniques in Marine Environmental Sciences, 1999. 18 p.
Google Scholar

20. Leung K.M., Ibrahim H., Dewhurst R.E., Morley N.J., Crane M., Lewis J.W. Concentrations of metallothionein-like proteins and heavy metals in the freshwater snail Lymnaea stagnalis exposed to different levels of waterborne cadmium. Bull. Environ. Contam. Toxicol., 2003; 71(5); 1084-1090.
Crossref PubMed Google Scholar

21. Lowry O.H., Rosebrough H.J., Farr A.L., Randall R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem., 1951; 193: 265-275.

22. Lukowiak K., Sunada H., Teskey M., Lukowiak K., Dalesman S. Environmentally relevant stressors alter memory formation in the pond snail Lymnaea. J. Exp. Biol., 2014; 217: 76-83.
Crossref PubMed Google Scholar

23. Melgar C., Geissen V., Cram S., Sokolov M., Bastidas P., Ruiz Suárez L.E., Que Ramos F.G., Sanchez A.J. Pollutants in drainage channels following long-term application of Mancozeb to banana plantations in southeastern Mexico. J. Plant. Nutr. Soil. Sci., 2008; 171(4): 597-604.
Crossref Google Scholar

24. Niederwanger M., Calatayud S., Zerbe O., Atrian S., Albalat R., Capdevila M., Palacios Ò., Dallinger R. Biomphalaria glabrata metallothionein: Lacking metal specificity of the protein and missing gene upregulation suggest metal sequestration by exchange instead of through selective binding. Int. J. Mol. Sci., 2017; 18(7): 1457.
Crossref PubMed Google Scholar

25. Nielson K.B., Winge D.R. Preferential binding of copper to the beta domain of metallothionein. J. Biol. Chem., 1984; 259: 4941-4946.
Google Scholar

26. Palacios Ò., Pagani A., Pérez-Rafael S., Egg M., Höckner M., Brandstätter A., Capdevila M., Atrian S., Dallinger R. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins. BMC Biol., 2011; 9: 4.
CrossrefPubMed Google Scholar

27. Palacios O., Pérez-Rafael S. Pagani A., Dallinger R., Atrian S., Capdevila M. Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model. J. Biol. Inorg. Chem., 2014; 19 (6): 923-935.
Crossref PubMed Google Scholar

28. Regoli F., Gorbi S., Fattorini D., Tedesco S., Notti A., Machella N., Bocchetti R., Benedetti M., Piva F. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ. Health Perspect., 2006; 114 (1): 63-69.
Crossref PubMed Google Scholar

29. Ren Y., Smith A. Mechanism of metallothionein gene regulation by heme-hemopexin. Roles of protein kinase C, reactive oxygen species, and cis-acting elements. J. Biol. Chem., 1995; 270(41): 23988-23995.
Crossref PubMed Google Scholar

30. Riera H., Afonso V., Collin P., Lomri A. A central role for JNK/AP-1 pathway in the pro-oxidant effect of pyrrolidine dithiocarbamate through superoxide dismutase 1 gene repression and reactive oxygen species generation in hematopoietic human cancer cell line U937. PLoS One, 2015; 10(5): e0127571.
Crossref PubMed Google Scholar

31. Roesijadi G., Fowler B. Purification of invertebrate metallothioneins. Met. Enzymol., 1991; 205: 263-273.
Crossref Google Scholar

32. Shuhaimi-Othman M., Nur-Amalina R., Nadzifah Y. Toxicity of metals to a freshwater snail, Melanoides tuberculata. Sci. World J., 2012; 2012: 125785.
Crossref PubMed Google Scholar

33. Srivastava A.K., Ali W., Singh R., Bhui K., Tyagi S., Al-Khedhairy A.A., Srivastava P.K., Musarrat J., Shukla Y. Mancozeb-induced genotoxicity and apoptosis in cultured human lymphocytes. Life. Sci., 2012; 90: 815-824.
Crossref PubMed Google Scholar

34. Sunderman F.W.Jr., Fraser C.B. Effects of nickel chloride and diethyldithiocarbamate on me­tallothionein in rat liver and kidney. Ann. Clin. Lab. Sci., 1983; 13(6): 489-495.
Google Scholar

35. Viarengo A., Lowe D., Bolognesi C., Fabbri E., Koehler A. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2007; 146: 281-300.
CrossrefPubMedGoogle Scholar

36. Viarengo A., Ponzano E., Dondero F., Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res., 1997; 44(1): 69-84.
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.