EVALUATION OF METALLOTHIONEIN RESPONSE IN LYMNAEA STAGNALIS POND SNAIL EXPOSURED TO TRACE METALS AND THIOCARBAMATE FUNGICIDE
DOI: http://dx.doi.org/10.30970/sbi.1301.585
Abstract
Pulmonate mollusks posses high uptake rates of dissolved metals and their bonding, mainly Cd, Zn and Cu by the metal-buffering protein, metallothionein (MT). However, most investigations are focused at the terrestrial species, whereas aquatic snails are studied scantly. Therefore, the main goal of our study was to evaluate a specificity of metal-binding function of the metallothionein in Lymnaea stagnalis pond snail. The mollusks were subjected to typical metallothionein inducers Cd2+, 15 mg·L-1;Cu2+, 10 mg·L-1; Zn2+, 130 mg·L-1 and oxidative stress inducer thiocarbamate Tattoo fungicide, 91 mg L−1 during 14 days. Applied concentrations corresponded to the ecologically relevant concentrations. Metal concentrations and metallothionein characteristics in a digestive gland were analyzed. In present study, all exposures to metals caused the elevation of the concentration of metals (Zn, Cu or Cd) in tissues and the total level of metallothionein detected from their thiols (MT-SH). Particularly, Zn level in tissues was increased by ~2−3 times in all cases of the exposure to metals. Cd increased the level of metal-contained form of the metallothionein (MT-Me). Tattoo affected the levels of metals and MT-SH in the tissue to low extent but caused the redistribution of metals between the metallothionein (increase) and other compounds. The distortion of the elution profile of metallothionein on the DEAE-cellulose was shown at each exposure. To summarize, snails demonstrated a wide spectrum of responses and juxtaposition of different characteristics depending on the exposure. The responses to metals and Tattoo were distinguished by the detection of metallothionein concentration. The primary reasons for the effect of thiocarbamate on the metal homeostasis needs further investigations.
Keywords
Full Text:
PDFReferences
1. Amiard J.C., Amiard-Triquet C., Barka S., Pellerin J., Rainbow P.S. Metallothioneins in aquatic invertebrates: Their use as biomarkers. Aquat. Toxicol., 2006; 76(2): 160-202. | |
| |
2. Beukelman T.E., Lord S.S. The standard addition technique in flame spectrometry. Appl. Spectrosc., 1960; 14(1): 12-17. | |
| |
3. Bhagat J., Ingole B.S., Singh N. Glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and lipid peroxidation as biomarkers of oxidative stress in snails: A review. Invert. Surviv. J., 2016; 13. | |
| |
4. Calviello G., Piccioni E., Boninsegna A., Tedesco B., Maggiano N., Serini S., Wolf F.I., Palozza P. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: involvement of the oxidative mechanism. Toxicol. Appl. Pharmacol., 2006; 211: 87-96. | |
| |
5. Dallinger R., Wang Y., Berger B., Mackay E.A., Kägi J.H.R. Spectroscopic characterization of metallothionein from the terrestrial snail, Helix pomatia. Eur. J. Biochem., 2001; 268: 4126-4133. | |
| |
6. Desouky M.M. Metallothionein is up-regulated in molluscan responses to cadmium, but not aluminum, exposure. J. Basic Appl. Zool., 2012; 65 (2): 139-143. | |
| |
7. Domico L.M., Cooper K.R., Bernard L.P., Zeevalk G.D. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology, 2007; 28: 1079-1091. | |
| |
8. Falfushynska H., Gnatyshyna L., Stoliar O. Effect of in situ exposure history on the molecular responses of freshwater bivalve Anodonta anatina (Unionidae) to trace metals. Ecotoxicol. Environ. Saf., 2013, 89: 73-83. | |
| |
9. Falfushynska H., Gnatyshyna L., Stoliar O. In situ exposure history modulates the molecular responses to carbamate fungicide Tattoo in bivalve mollusk. Ecotoxicology, 2013; 22 (3): 433-445. | |
| |
10. Falfushynska H., Gnatyshyna L., Stoliar O., Mitina N., Skorokhoda T., Filyak Ye., Zaichenko A., Stoika R. Evaluation of biotargeting and ecotoxicity of Co2+-containing nanoscale polymeric complex by applying multi-marker approach in bivalve mollusk Anodonta cygnea. Chemosphere, 2012; 88: 925-936. | |
| |
11. Falfushynska H., Gnatyshyna L., Yurchak I., Sokolova I., Stoliar O. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants. Aquat. Toxicol., 2015; 162: 82-93. | |
| |
12. Falfushynska H.I., Gnatyshyna L.L., Fedoruk O.O., Stoliar O.B. Variability of metallothioneins responses in freshwater mussels exposed to trace metals or thiocarbamate pesticide. Sci. Lett. J., 2014; 3: 67. | |
| |
13. Gnatyshyna L., Falfushynska H., Bodilovska O., Oleynik O., Golubev A., Stoliar O. Metallothionein and glutathione in Lymnaea stagnalis determine the specificity of responses on the effects of ionising radiation. Radioprotection, 2012; 47(2): 231-242. | |
| |
14. Gnatyshyna L.L., Fal'fushynska H.I., Golubev A.P., Dallinger R., Stoliar O.B. Role of Metallothioneins in Adaptation of Lymnaea stagnalis (Mollusca: Pulmonata) to Environment Pollution. Hydrobiol. J., 2011; 47(5): 56-66. | |
| |
15. Golubev A., Afonin V., Maksimova S., Androsov V. The current state of pond snail Lymnaea stagnalis populations from water reservoirs of the Chernobyl nuclear accinent zone. Radioprotection, 2005; 40(S1): 511-517. | |
| |
16. Gonçalves S.F., Davies S.K., Bennet M., Raab A., Feldmann J., Kille P., Loureiro S., Spurgeon D., Bundy J.G. Sub-lethal cadmium exposure increases phytochelatin concentrations in the aquatic snail Lymnaea stagnalis. Sci. Total Environ., 2016; 568: 1054-1058. | |
| |
17. Guerlet E., Ledy K., Giambérini L. Field application of a set of cellular biomarkers in the digestive gland of the freshwater snail Radix peregra (Gastropoda, Pulmonata). Aquat. Toxicol., 2006; 77(1): 19-32. | |
| |
18. Hispard F., Schuler D., deVaufleury A., Scheifler R., Badot P.M., Dallinger R. Metal distribution and metallothionein induction after cadmium exposure in the terrestrial snail Helix aspersa (Gastropoda, Pulmonata). Environ. Toxicol. Chem., 2008; 27(7): 1533-1542. | |
| |
19. Hylland K. Biological effects of contaminants: Quantification of metallothionein (MT) in fish liver tissue. Denmark: ICES Techniques in Marine Environmental Sciences, 1999. 18 p. | |
| |
20. Leung K.M., Ibrahim H., Dewhurst R.E., Morley N.J., Crane M., Lewis J.W. Concentrations of metallothionein-like proteins and heavy metals in the freshwater snail Lymnaea stagnalis exposed to different levels of waterborne cadmium. Bull. Environ. Contam. Toxicol., 2003; 71(5); 1084-1090. | |
| |
21. Lowry O.H., Rosebrough H.J., Farr A.L., Randall R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem., 1951; 193: 265-275. | |
| |
22. Lukowiak K., Sunada H., Teskey M., Lukowiak K., Dalesman S. Environmentally relevant stressors alter memory formation in the pond snail Lymnaea. J. Exp. Biol., 2014; 217: 76-83. | |
| |
23. Melgar C., Geissen V., Cram S., Sokolov M., Bastidas P., Ruiz Suárez L.E., Que Ramos F.G., Sanchez A.J. Pollutants in drainage channels following long-term application of Mancozeb to banana plantations in southeastern Mexico. J. Plant. Nutr. Soil. Sci., 2008; 171(4): 597-604. | |
| |
24. Niederwanger M., Calatayud S., Zerbe O., Atrian S., Albalat R., Capdevila M., Palacios Ò., Dallinger R. Biomphalaria glabrata metallothionein: Lacking metal specificity of the protein and missing gene upregulation suggest metal sequestration by exchange instead of through selective binding. Int. J. Mol. Sci., 2017; 18(7): 1457. | |
| |
25. Nielson K.B., Winge D.R. Preferential binding of copper to the beta domain of metallothionein. J. Biol. Chem., 1984; 259: 4941-4946. | |
| |
26. Palacios Ò., Pagani A., Pérez-Rafael S., Egg M., Höckner M., Brandstätter A., Capdevila M., Atrian S., Dallinger R. Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins. BMC Biol., 2011; 9: 4. | |
| |
27. Palacios O., Pérez-Rafael S. Pagani A., Dallinger R., Atrian S., Capdevila M. Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model. J. Biol. Inorg. Chem., 2014; 19 (6): 923-935. | |
| |
28. Regoli F., Gorbi S., Fattorini D., Tedesco S., Notti A., Machella N., Bocchetti R., Benedetti M., Piva F. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environ. Health Perspect., 2006; 114 (1): 63-69. | |
| |
29. Ren Y., Smith A. Mechanism of metallothionein gene regulation by heme-hemopexin. Roles of protein kinase C, reactive oxygen species, and cis-acting elements. J. Biol. Chem., 1995; 270(41): 23988-23995. | |
| |
30. Riera H., Afonso V., Collin P., Lomri A. A central role for JNK/AP-1 pathway in the pro-oxidant effect of pyrrolidine dithiocarbamate through superoxide dismutase 1 gene repression and reactive oxygen species generation in hematopoietic human cancer cell line U937. PLoS One, 2015; 10(5): e0127571. | |
| |
31. Roesijadi G., Fowler B. Purification of invertebrate metallothioneins. Met. Enzymol., 1991; 205: 263-273. | |
| |
32. Shuhaimi-Othman M., Nur-Amalina R., Nadzifah Y. Toxicity of metals to a freshwater snail, Melanoides tuberculata. Sci. World J., 2012; 2012: 125785. | |
| |
33. Srivastava A.K., Ali W., Singh R., Bhui K., Tyagi S., Al-Khedhairy A.A., Srivastava P.K., Musarrat J., Shukla Y. Mancozeb-induced genotoxicity and apoptosis in cultured human lymphocytes. Life. Sci., 2012; 90: 815-824. | |
| |
34. Sunderman F.W.Jr., Fraser C.B. Effects of nickel chloride and diethyldithiocarbamate on metallothionein in rat liver and kidney. Ann. Clin. Lab. Sci., 1983; 13(6): 489-495. | |
| |
35. Viarengo A., Lowe D., Bolognesi C., Fabbri E., Koehler A. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2007; 146: 281-300. | |
| |
36. Viarengo A., Ponzano E., Dondero F., Fabbri R. A simple spectrophotometric method for metallothionein evaluation in marine organisms: an application to Mediterranean and Antarctic molluscs. Mar. Environ. Res., 1997; 44(1): 69-84. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.