INVESTIGATION OF THE MAGNETORESISTIVE EFFECT IN SINGLE- CRYSTALLINE n-CdxHg1-xTe (= 0,19÷0,2). I. EXPERIMENT

Viktor Belyukh, B. Pavlyk

Abstract


The first part of our article presents the results of experimental studies of the temperature dependences of the magnetoresistance, Δρ|/ρ0 = f(T), of single-crystalline n- CdxHg1‑xTe (x=0,19÷0,2). We studied samples of n-CdxHg1-xTe single crystals grown by the modified Bridgman method from the main components of the 6N or 7N purity class. The crystals were additionally doped with indium from the melt, and therefore they had n-type electrical conductivity. The concentration of the majority charge carriers in such a material usually did not exceed 3×1014см‑3, and the concentration of the dopant was < 5.1015см‑3. Since we performed the magnetoresistance measurements simultaneously with the Hall effect measurements, the samples were prepared in the classical Hall configuration. Approximate sample sizes: (8–10)*(1–2)*(0,6–0,8) мм3. All measurements were carried out in a constant magnetic field with induction B = 0.42 T. For the first time in this material, the dependence of the magnetoresistance on the direction of the magnetic field was experimentally observed. It was found that the resistivity ρ| of n-CdxHg1-xTe samples-parallelepiped, measured on the left face (when viewed in the direction of vector B), is lower at the positive direction of the magnetic field (B+) than at the negative (B-). These results are confirmed by multiple measurements on several samples. In addition, in the n–CdxHg1-xTe (x~0,19) sample, measurements on the left face revealed a decrease in the resistivity in the magnetic field (B+) compared with measurements without the field (anomalous magnetoresistive effect). This effect is observed in a fairly wide temperature range. In the n–CdxHg1-xTe (x~0,2) sample, this effect was also revealed, but only in a small temperature range. In the second part of this article a detailed theoretical analysis of the obtained results will be made.

Key words: narrow gap semiconductors, conductivity, magnetoresistance, magnetoresistive effect


References


Lawson W. D., Nielsen S., Putley E. H., Young A.S. Praperation and properties of HgTe and mixed crystals of HgTe-CdTe // Journal of Physics and Chemistry of Solids. - 1959. - Vol.9, №3-4. - P. 325-329.

Easley J., Arcun E., Cui B. et al. Analysis of Carrier Transport in n-type Hg1-xCdxTe with Ultra-Low Doping Concentration // Journal of Electronic Materials. - 2018. - Vol.47, №10. - P. 5699-5704.

Izhnin I.I., Mynbaev K.D., Voitsekhovsky A.V. et al. Arsenic-ion implantation-induced defects in HgCdTe films studied with Hall-effect measurements and mobility spectrum analysis // Infrared Physics and Technology. - 2019. - Vol.98. - P. 230-235.

Korotaev A.G., Izhnin I.I., Mynbaev K.D. et al. Hall-effect studies of modification of HgCdTe surface properties with ion implantation and thermal annealing // Surface and Coatings Technology. - 2020. - Vol.393. - P. 125721 (1-5).

Ikemoto Y., Zen H. HgCdTe detector saturation using infrared free electron laser and infrared synchrotron radiation // Infrared Physics and Technology. - 2020. - Vol.106. - P. 103268 (1-4).

Kinch M. A. Fundamentals of Infrared Detector Materials // SPIE Press, Bellingham, USA. - 2007. - P. 61-133.

Dornhaus R., Nimtz G. The Properties and Applications of Hg1-xCdxTe Alloy System // Narrow-Gap Semiconductors. Springer Tracts in Modern Physics. - 1983. - Vol.98. - P. 119-309.

Chu J., Sher A. Physics and Properties of Narrow Gap Semiconductors // Series “Microdevices: Physics and Fabrication Technologies”, Springer Science + Business Media, LLC. - 2008. - 612 p.

Chu J., Sher A. Device Physics of Narrow Gap Semiconductors // Series “Microdevices: Physics and Fabrication Technologies”, Springer Science + Business Media, LLC. - 2010. - 515 p.

Kim J. S., Seiler D. G., Tseng W. F. Multicarrier characterization method for extracting mobilities and carrier densities of semiconductors from variable magnetic field measurements // Journal Applied Physics. - 1993. - Vol.73, №12. - P. 8324-8335.

Kim J. S., Seiler D. G., Colombo L. , Chen M. C. Electrical characterization of liquid-phase epitaxially grown single-crystal films of mercury cadmium telluride by variable-magnetic-field Hall measurements // Semiconductor Science and Technology. - 1994. - Vol.9, №9. - P. 1696-1705.

Kim J. S., Seiler D. G., Colombo L., Chen M. C. Characterization of Liquid-Phase Epitaxially Grown HgCdTe Films by Magnetoresistance Measurements // Journal of Electronic Materials. - 1995. - Vol.24, №9. - P. 1305-1310.

Mercury Cadmium Telluride: Growth, Properties and Application / Edited by P. Capper and J. Garland // John Wiley and Sons Ltd., U.K. - 2011. - 598 p.

Dornhaus R., Nimtz G., Schlabitz W., Zaplinski P. Galvanomagnetic properties of n–type Hg0.8Cd0.2Te // Solid State Communications. - 1974. - Vol.15, №3. - P. 495-498.

Fiorito G., Gasparrini G., Passoni D. A possible method for the grown of homogeneous mercury cadmium telluride single crystals // Journal of The Electrochemical Society. - 1978. - Vol.125, №2. - P. 315-317.

Белюх В., Цілінська І. Вплив низькотемпературного лазерного відпалу на гальваномагнітні властивості монокристалічного CdxHg1-xTe (x»0,2) // Вісник Львівського університету. Сер. фізична. - 2003. - Вип.36. - С. 242-254.

Белюх В., Павлик Б. Вплив низькотемпературного відпалу у вакуумі на фізичні властивості монокристалічного n–CdxHg1-xTe (x»0,19) // Електроніка та інформаційні технології. - 2018. - Вип.9. - С. 150-163.

Белюх В., Павлик Б. Вплив низькотемпературного відпалу у вакуумі на фізичні властивості монокристалічного p–CdxHg1-xTe (x»0,28) // Електроніка та інформаційні технології. - 2018. - Вип.10. - С. 142-153.

Кучис Е. В. Методы исследования эффекта Холла. – М. : Советское радио, 1974. – 328 с.

Кучис Е. В. Гальваномагнитные эффекты и методы их исследования. – М. : Радио и связь, 1990. – 264 с.

Белюх В. М., Біленький Б. Ф., Волощук Р. Я., Данилюк Ю. В., Сторчун П. Є. Автоматизована установка для вимірювання електрофізичних параметрів напівпровідників // Вісник Львівського університету. Сер. фізична. - 1995. - Вип.27. - С. 139-142.

Аскеров Б. М. Кинетические эффекты в полупроводниках. – Л. : Наука, 1970. – 303 с.

Ivanov-Omskii I. I., Berchenko N. N., Elizarov A. I. Transport Anomalies in CdxHg1-xTe // Physica Status Solidi (a). - 1987. - Vol.103, №1. - P. 11-28.

Scott W. Electron mobility in Hg1-xCdxTe // Journal of Applied Physics. - 1972. - Vol.43, №3. - P. 1055-1062.

Long D., Schmit J. L. Mercury-Cadmium Telluride and Closely Related Alloys // in Semiconductors and Semimetals (edited by R. K. Willardson and R. C. Beer), Academic Press (New York and London). - 1970. - Vol.5. - P. 175-255.

Bartlett B. E., Capper P., Harris J. E., Quelch M. J. T. Factors Affecting the Electrical Characteristics of Cadmium Mercury Telluride Crystals // Journal of Crystal Growth. - 1980. - Vol.49, №4. - P. 600-606.

Van der Pauw L. J. A method of measuring specific resistivity and Hall Effect of discs of arbitrary shape // Philips Research Reports. - 1958. - Vol.13, №1. - P. 1-9.

Dornhaus R., Nimtz G. Transverse Magnetoresistance of Hg1-xCdxTe in the Extreme Quantum Limit // Solid State Communications. - 1977. - Vol.22, №1. - P. 41-45.

Tsidilkovskii I. M, Giriat W., Kharus G. I., Neifeld E. A. Longitudinal Magnetoresistance and Hall Effect of CdxHg1-xTe in Strong Magnetic Fields // Physica Status Solidi (b). - 1974. - Vol.64, №2. - P. 717-727.




DOI: http://dx.doi.org/10.30970/eli.15.10

Refbacks

  • There are currently no refbacks.