КЛІТИННІ МЕХАНІЗМИ ЕРИТРОДІЕРЕЗУ

T. Korol

Анотація


У нормі еритродіерез перебуває в динамічній рівновазі з процесом еритропоезу, а отже, є одним із чинників, який забезпечує відносно постійну кількість еритроцитів у кров’яному руслі. Руйнування зазнають фізіологічно старі, пошкоджені та нежиттєздатні еритроцити, а також еритроцити, які утворилися під час стресового еритропоезу. Кліренс еритроцитів є селективним процесом. Із кровотоку насамперед вилучаються ті клітини, які втратили здатність до деформації. Здатність еритроцитів деформуватися залежить від форми клітин, в’язкості цитоплазми та механічних властивостей мембрани. Старі та змінені еритроцити є досить ригідними, а тому затримуються у вузьких капілярах і венозних синусах печінки й селезінки. Окрім того, макрофаги печінки та селезінки фагоцитують еритроцити, які на своїй поверхні експонують сигнальні молекули «з’їж мене». Експозиція фосфатидилсерину на зовнішній поверхні еритроцитів призводить до їхнього вилучення з кровотоку клітинами Купфера й іншими мононуклеарними фагоцитами. Під час ініціації еритрофагоцитозу фосфатидилсерин зовнішнього ліпідного шару плазматичної мембрани еритроцитів безпосередньо взаємодіє з рецепторами Stabilin-2, Tim-1, Tim-4 або CD300 макрофагів. Інтегрини макрофагів avb3 та avb5, а також рецептор Mer тирозинкінази опосередковано взаємодіють з фосфатидилсерином поверхні еритроцитів за допомогою розчинних протеїнів MFG-E8, Gas 6 і протеїну S. Кластеризація протеїну смуги 3 мембрани еритроцитів спричиняє зв’язування природних антитіл, а опсонізація еритроцитів за допомогою C3b підсилює цей процес і сприяє розпізнаванню таких клітин макрофагами червоної пульпи селезінки. У старіючих еритроцитах пригнічується утворення комплексу CD47-SIRPα (сигнал «не їж мене»), який гальмує їхній фагоцитоз, а відтак – з’являється додатковий стимул для захоплення еритроцитів макрофагами селезінки та печінки.
Мета огляду – описати механізми еритрофагоцитозу й молекулярні детер­мінанти старіння і загибелі еритроцитів, у тому числі ериптозу та неоцитолізу, висвітлити факти й суперечності, наявні на сучасному етапі вивчення цього питання.


Ключові слова


еритроцит; еритродіерез; фагоцитоз; ериптоз; фосфатидилсерин; внутрішньоклітинна концентрація Са2+

Повний текст:

PDF

Посилання


Ataullakhanov F. Y., Korunova N. O., Spyrydonova Y. S. y dr. Kak rehulyruetsia obem erytrotsyta, yly chto mohut y cheho ne mohut matematycheskye modely v byolohyy // Byolohycheskye membrany. 2009. T. 26. № 3. S. 163-79.

Kaniuka O. P., Filiak Ye. Z., Kulachkovskyi O. R. ta in. Kilkisni zminy osnovnykh komponentiv erytrotsytarnoi membrany, shcho vyznachaiut arkhitektoniku klityn za nokautu hena pttg // Ukrainian Biochemical Journal. 2014. Vol. 86. N 2. S. 41-49.

Novytskyi V. V., Riazantseva N. V., Stepovaia E. A. Fyzyolohyia y patofyzyolohyia erytrotsyta. Tomsk: Yzd-vo Tomsk. un-ta, 2004. 200 s.

Rukovodstvo po hematolohyy / pod red. A.Y. Vorobeva. T. 3. M.: Niudyamed, 2005. 416 s.

Urazova O. Y., Novytskyi V. V. Laboratornaia dyahnostyka hematolohycheskykh syndromov y boleznei. Tomsk: Pechatnaia manufaktura, 2008. 97 s.

Alaarg A., Schiffelers R. M., van Solinge R. W., van Wijk R. Red blood cell vesiculation in hereditary hemolytic anemia // Front. Physiol. 2013. Vol. 4. P. 365. https://doi.org/10.3389/fphys.2013.00365

Alfrey C. P., Rice L., Udden M. M., Driscoll T. B. Neocytolysis: physiological down-regulator of red-cell mass // Lancet. 1997. Vol. 349. N 9062. P. 1389-1390. https://doi.org/10.1016/S0140-6736(96)09208-2

Arandjelovic S., Ravichandran K. S. Phagocytosis of apoptotic cells in homeostasis // Nat. Immunol. 2015. Vol. 16. N 9. P. 907-917. https://doi.org/10.1038/ni.3253

Arashiki N., Kimata N., Manno S. et al. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence // Biochemistry. 2013. Vol. 52. N 34. P. 5760-5769. https://doi.org/10.1021/bi400405p

Arndt P. A., Garratty G. Rh(null) red blood cells with reduced CD47 do not show increased interactions with peripheral blood monocytes // Br. J. Haematol. 2004. Vol. 125. N 3. P. 412-414. https://doi.org/10.1111/j.1365-2141.2004.04911.x

Barclay A. N., van den Berg T. K. The interaction between Signal Regulatory Protein Alpha (SIRPAlpha) and CD47: structure, function, and therapeutic target // Annu. Rev. Immunol. 2014. Vol. 32. P. 25-50. https://doi.org/10.1146/annurev-immunol-032713-120142

Bevers E., Comfurius P., Dekkers D., Zwaal R. Lipid translocation across the plasma membrane of mammalian cells // Biochim. Biophys. Acta. 1999. Vol. 1439. N 3. P. 317-330. https://doi.org/10.1016/S1388-1981(99)00110-9

Bogdanova A., Makhro A., Wang J. et al. Calcium in red blood cells-a perilous balance // Int. J. Mol. Sci. 2013. Vol. 14. P. 9848-9872. https://doi.org/10.3390/ijms14059848

Bookchin R. M., Lew V. L. Progressive inhibition of the Ca pump and Ca:Ca exchange in sickle red cells // Nature. 1980. Vol. 284. P. 561-563. https://doi.org/10.1038/284561a0

Bosman G. J. Survival of red blood cells after transfusion: processes and consequences // Front. Physiol. 2013. Vol. 4. P. 376. https://doi.org/10.3389/fphys.2013.00376

Bosman G. J., Willekens F. L., Werre J. M. Erythrocyte aging: a more than superficial resemblance to apoptosis? // Cell Physiol. Biochem. 2005. Vol. 16. P. 1-8. https://doi.org/10.1159/000087725

Brovelli A., Minetti G. Red cell ageing. In: Bernhardt I, Ellory JC (eds). Red Cell Membrane Transport in Health and Disease. Springer: Heidelberg, Germany, 2003. P. 673-690. https://doi.org/10.1007/978-3-662-05181-8_29

Bruce L. J., Ghosh S., King M. J. et al. Tanner Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex // Blood. 2002. Vol. 100. N 5. P. 1878-1885. https://doi.org/10.1182/blood-2002-03-0706

Burger P., Hilarius-Stokman P., de Korte D. et al. CD47 functions as a molecular switch for erythrocyte phagocytosis // Blood. 2012. Vol. 119. P. 5512-5521. https://doi.org/10.1182/blood-2011-10-386805

Burnier L., Fontana P., Kwak B. R., Angelillo-Scherrer F. Cell-derived microparticles in haemostasis and vascular medicine // Thromb. Haemost. 2009. Vol. 101. N 3. P. 439-451. https://doi.org/10.1160/TH08-08-0521

Catan A., Turpina C., Diotela N. et al. Aging and glycation promote erythrocyte phagocytosis by human endothelial cells: Potential impact in atherothrombosis under diabetic conditions // Atherosclerosis. 2019. Vol. 291. P. 87-98. https://doi.org/10.1016/j.atherosclerosis.2019.10.015

Chu H., Puchulu-Campanella E., Galan J. A. et al. Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. P. 12794-12799. https://doi.org/10.1073/pnas.1209014109

Ciana A., Achilli C., Gaur A., Minetti G. Membrane remodelling and vesicle formation during ageing of human red blood cells // Cell Physiol. Biochem. 2017. Vol. 42. N 3. P. 1127-1138. https://doi.org/10.1159/000478768

Ciana A., Achilli C., Minetti G. Spectrin and other membrane-skeletal components in human red blood cells of different age // Cell Physiol. Biochem. 2017. Vol. 42. N 3. P. 1139-1152. https://doi.org/10.1159/000478769

de Back D. Z., Kostova E. B., van Kraaij M. et al. Of macrophages and red blood cells; a complex love story // Front. Physiol. 2014. Vol. 5. P. 9. https://doi.org/10.3389/fphys.2014.00009

de Vooght K. M., Lau C., de Laat P. P. et al. Extracellular vesicles in the circulation: are erythrocyte microvesicles a confounder in the plasma haemoglobin assay? // Biochem. Soc. Trans. 2013. Vol. 41. N 1. P. 288-292. https://doi.org/10.1042/BST20120254

Derganc J., Bozic B., Svetina S., Zeks B. Equilibrium shapes of erythrocytes in rouleau formation // Biophys. J. 2003. Vol. 84. P. 1486-1492. https://doi.org/10.1016/S0006-3495(03)74961-3

Dyrda A., Cytlak U., Ciuraszkiewicz A. et al. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells // PLoS ONE. 2010. Vol. 5. N 2. P. e9447. https://doi.org/10.1371/journal.pone.0009447

Ensinck M. A., Brajovich M. E. L, Borrás S. G. et al. Erythrocyte senescent markers by flow cytometry // Open Journal of Blood Diseases. 2019. Vol. 09. N 03. P. 47-59. https://doi.org/10.4236/ojbd.2019.93006

Fader C. M., Colombo M. I. Multivesicular bodies and autophagy in erythrocyte maturation // Autophagy. 2006. Vol. 2. N 2. P. 122-125. https://doi.org/10.4161/auto.2.2.2350

Fedosov D. A., Dao M., Karniadakis G. E., Suresh S. Computational biorheology of human blood flow in health and disease // Ann. Biomed. Eng. 2014. Vol. 42. P. 368-387. https://doi.org/10.1007/s10439-013-0922-3

Fedosov D. A., Noguchi H., Gompper G. Multiscale modeling of blood flow: from single cells to blood rheology // Biomech. Model. Mechanobiol. 2014. Vol. 13. P. 239-258. https://doi.org/10.1007/s10237-013-0497-9

Fens M. H., van Wijk R., Andringa G. et al. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology // Haematologica. 2012. Vol. 97. P. 500-508. https://doi.org/10.3324/haematol.2011.048694

Flannagan R. S., Jaumouille V., Grinstein S. The cell biology of phagocytosis // Annu. Rev. Pathol. 2012. Vol. 7. P. 61-98. https://doi.org/10.1146/annurev-pathol-011811-132445

Foller M., Kasinathan R. S., Koka S. et al. TRPC6 contributes to the Ca(2+) leak of human erythrocytes // Cell Physiol. Biochem. 2008. Vol. 21. N 1-3. P. 183-192. https://doi.org/10.1159/000113760

Franco R. S. The measurement and importance of red cell survival // Am. J. Hematol. 2009. Vol. 84. P. 109-114. doi: 10.1002/ajh.21298 https://doi.org/10.1002/ajh.21298

Franco R. S., Puchulu-Campanella M. E., Barber L. A. et al. Changes in the properties of normal human red blood cells during in vivo aging // Am. J. Hematol. 2013. Vol. P. 44-51. https://doi.org/10.1002/ajh.23344

Fujioka Y., Matozaki T., Noguchi T. et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2- domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion // Mol. Cell. Biol. 1996. Vol. 16. N 12. P. 6887-6899. https://doi.org/10.1128/MCB.16.12.6887

Gao A. G., Frazier W. A. Identification of a receptor candidate for the carboxyl-terminal cell binding domain of thrombospondins // J. Biol. Chem. 1994. Vol. 269. N 47. P. 29650-29657.

Gardai S. J., McPhillips K. A., Frasch S. C. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte // Cell. 2005. Vol. 123. P. 321-334. https://doi.org/10.1016/j.cell.2005.08.032

Gincel D., Silberberg S. D., Shoshan-Barmatz V. Modulation of the voltage-dependent anion channel (VDAC) by glutamate // J. Bioenerg. Biomembr. 2000. Vol. 32. N 6. P. 571-583. https://doi.org/10.1023/A:1005670527340

Ghashghaeinia M., Cluitmans J. C. A., Akel A. et al. The impact of erythrocyte age on eryptosis // Br. J. Haematol. 2012. Vol. 157. N 5. P. 606-614. https://doi.org/10.1111/j.1365-2141.2012.09100.x

Gompper G., Fedosov D. A. Modeling microcirculatory blood flow: current state and future perspectives // Wiley Interdiscip. Rev. Syst. Biol. Med. 2016. Vol. 8. 157-168. https://doi.org/10.1002/wsbm.1326

Graham T. Flippases and vesicle-mediated protein transport // Trends Cell Biol. 2004. Vol. 14. N 12. P. 670-677. https://doi.org/10.1016/j.tcb.2004.10.008

Harisa G. I., Badran M. M., Alanazi F. K. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach: Erythrocyte nanovesicles // Saudi Pharm J. 2017. Vol. 25. N 1. P. 8-17. https://doi.org/10.1016/j.jsps.2015.06.010

Holroyde C. P., Gardner F. H. Acquisition of autophagic vacuoles by human erythrocytes. Physiological role of the spleen // Blood. 1970. Vol. 36. P. 566-575. https://doi.org/10.1182/blood.V36.5.566.566

Hornig R., Lutz H. U. Band 3 protein clustering on human erythrocytes promotes binding of naturally occurring anti-band 3 and anti-spectrin antibodies // Exp. Gerontol. 2000. Vol. 35. N 8. P. 1025-1044. https://doi.org/10.1016/S0531-5565(00)00126-1

Jank H., Salzer U. Vesicles generated during storage of red blood cells enhance the generation of radical oxygen species in activated neutrophils // Sci. World J. 2011. Vol. 11. P. 173-185. https://doi.org/10.1100/tsw.2011.25

Kaestner L. Cation channels in erythrocytes - historical and future perspective // Open Biol. J. 2011. Vol. 4. P. 27-34. https://doi.org/10.2174/1874196701104010027

Kaestner L., Minetti G. The potential of erythrocytes as cellular aging models // Cell Death & Differentiation. 2017. Vol. 24. P. 1475-1477. https://doi.org/10.1038/cdd.2017.100

Kay M. M. Band 3 and its alterations in health and disease // Cell. Mol. Biol. 2004. Vol. 50. N 2. P. 117-138.

Kent G., Minick O. T., Volini F. I., Orfei E. Autophagic vacuoles in human red cells // Am. J. Pathol. 1966. Vol. 48. P. 831-857.

Khera R., Das N. Complement Receptor 1: Disease associations and therapeutic implications // Mol. Immunol. 2009. Vol. 46. N 5. P. 761-772. https://doi.org/10.1016/j.molimm.2008.09.026

Knowles D., Tilley L., Mohandas N., Chasis J. Erythrocyte membrane vesiculation: model for the molecular mechanism of protein sorting // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. N 24. P. 12969-12974. https://doi.org/10.1073/pnas.94.24.12969

Kolb S., Vranckx R., Huisse M.-G. et al. The phosphatidylserine receptor mediates phagocytosis by vascular smooth muscle cells // J. Pathol. 2007. Vol. 212. N 3. P. 249-259. https://doi.org/10.1002/path.2190

Kristiansen M., Graversen J. H., Jacobsen C. et al. Identification of the haemoglobin sca­venger receptor // Nature. 2001. Vol. 409. N 6817. P. 198-201. https://doi.org/10.1038/35051594

Kuchel P. W., Shishmarev D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells // Sci. Adv. 2017. Vol. 3. N 10. P. eaao1016. https://doi.org/10.1126/sciadv.aao1016

Lang F., Gulbins E., Lang P. A. et al. Ceramide in suicidal death of erythrocytes // Cell. Physiol. Biochem. 2010. Vol. 26. N 1. P. 21-28. https://doi.org/10.1159/000315102

Lang F., Gulbins E., Lerche H. et al. Eryptosis,a window to systemic disease // Cell Physiol. Biochem. 2008. Vol. 22. P. 373-80. https://doi.org/10.1159/000185448

Lang F., Qadri S. M. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes // Blood Purification. 2012. Vol. 33. N 1-3. P. 125-130. https://doi.org/10.1159/000334163

Lang K. S., Duranton C., Poehlmann H. et al. Cation channels trigger apoptotic death of erythrocytes // Cell Death Differ. 2003. Vol. 10. P. 249-256. https://doi.org/10.1038/sj.cdd.4401144

Lang K. S., Lang P. A., Bauer C. et al. Mechanisms of suicidal erythrocyte death // Cell Physiol. Biochem. 2005. Vol. 15. N 5. P. 195-202. https://doi.org/10.1159/000086406

Lang K. S., Myssina S., Brand V. et al. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes // Cell Death Differ. 2004. Vol. 11. N 2. P. 231-243. https://doi.org/10.1038/sj.cdd.4401311

Lang P. A., Kempe D. S., Tanneur V. et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor // J. Cell Sci. 2005. Vol. 118. P. 1233-1243. https://doi.org/10.1242/jcs.01730

Lanotte L., Mauer J., Mendez S. et al. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions // Proc. Natl. Acad. Sci. 2016. Vol. 113. P. 13289-13294. https://doi.org/10.1073/pnas.1608074113

Levy A. P., Asleh R., Blum S. et al. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010. Vol. 12. N 2. P. 293-304. https://doi.org/10.1089/ars.2009.2793

Lew V. L., Daw N., Etzion Z. et al. Effects of age-dependent membrane transport changes on the homeostasis of senescent human red blood cells // Blood. 2007. Vol. 110. P. 1334-1342. https://doi.org/10.1182/blood-2006-11-057232

Lew V. L., Raftos J. E., Sorette M. P. e al. Generation of normal human red cell volume, hemoglobin content and membrane area distributions, by "birth" or regulation? // Blood. 1995. Vol. 86. P. 334-341. https://doi.org/10.1182/blood.V86.1.334.bloodjournal861334

Lew V. L., Tiffert T. On the mechanism of human red blood cell longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels // Front Physiol. 2017. Vol. 12. N 8. P. 977. https://doi.org/10.3389/fphys.2017.00977

Lutz H. U., Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans // Front. Physiol. 2013. Vol. 4. P. 387. https://doi.org/10.3389/fphys.2013.00387

Lutz H. U. Naturally occurring anti-band 3 antibodies in clearance of senescent and oxidatively stressed human red blood cells // Transfus Med Hemother. 2012. Vol. 39. N 5. P. 321-327. https://doi.org/10.1159/000342171

Lutz H. U., Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans // Front Physiol. 2013. Vol. 4. P. 387. https://doi.org/10.3389/fphys.2013.00387

Maher A. D., Kuchel P. W. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes // Int. J. Biochem. Cell Biol. 2003. Vol. 35. N 8. P. 1182-1197. https://doi.org/10.1016/S1357-2725(02)00310-2

Mairbäurl H. Neocytolysis: how to get rid of the extra erythrocytes formed by stress erythropoiesis upon descent from high altitude // Front Physiol. 2018. Vol. 9. P. 345. https://doi.org/10.3389/fphys.2018.00345

Makhro A., Wang J., Vogel J. et al. Functional NMDA receptors in rat erythrocytes // Am. J. Physiol. Cell Physiol. 2010. Vol. 298. N 6. P. C1315-C1325. https://doi.org/10.1152/ajpcell.00407.2009

Makhro A., Hanggi P., Goede J. et al. N-Methyl d-Aspartate (NMDA) receptors in erythroid precursor cells and in circulating human red blood cells contributes to the regulation of intracellular calcium levels // Am. J. Physiol. 2013. Vol. 305. N 11. P. C1123-C1138. https://doi.org/10.1152/ajpcell.00031.2013

Mandal D., Mazumder A., Das P. et al. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes // J. Biol. Chem. 2005. Vol. 280. P. 39460-39467. https://doi.org/10.1074/jbc.M506928200

Matozaki T., Murata Y., Okazawa H., Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway // Trends Cell Biol. 2009. Vol. 19. N 2. P. 72-80. https://doi.org/10.1016/j.tcb.2008.12.001

Mehdi M. M., Singh P., Rizvi S. I. Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress // Dis Markers. 2012. Vol. 32. N 3. P. 179-186. https://doi.org/10.1155/2012/293429

Melhorn M. I., Brodsky A. S., Estanislau J. et al. CR1-mediated ATP Release by Human Red Blood Cells Promotes CR1 Clustering and Modulates the Immune Transfer Process // J. Biol. Chem. 2013. Vol. 288. N 43. P. 31139-31153. https://doi.org/10.1074/jbc.M113.486035

Miller Y. E., Daniels G. L., Jones C., Palmer D. K. Identification of a cell-surface antigen produced by a gene on human chromosome 3 (cen-q22) and not expressed by Rhnull cells // Am. J. Hum. Genet. 1987. Vol. 41. N 6. P. 1061-1070.

Morel O., Jesel L., Freyssinet J., Toti F. Cellular mechanisms underlying the formation of circulating microparticles // Arterioscler. Thromb. Vasc. Biol. 2011. Vol. 31. N 1. P. 15-26. https://doi.org/10.1161/ATVBAHA.109.200956

Neelam S., Kakhniashvili D. G., Wilkens S. et al. Functional 20S proteasomes in mature human red blood cells // Exp. Biol. Med (Maywood). 2011. Vol. 236. N 5. P. 580-591. https://doi.org/10.1258/ebm.2011.010394

Nilsson A., Vesterlund L., Oldenborg P. A. Macrophage expression of LRP1, a receptor for apoptotic cells and unopsonized erythrocytes, can be regulated by glucocorticoids // Biochem. Biophys. Res, Commun. 2012. Vol. 417. N 4. P. 1304-1309. https://doi.org/10.1016/j.bbrc.2011.12.137

Olsson M., Nilsson A., Oldenborg P. A. Dose-dependent inhibitory effect of CD47 in macrophage uptake of IgG-opsonized murine erythrocytes // Biochem. Biophys. Res. Commun. 2007. Vol. 352. N 1. P. 193-197. https://doi.org/10.1016/j.bbrc.2006.11.002

Pantaleo A., Giribaldi G., Mannu F. et al. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions // Autoimmun. Rev. 2008. Vol. 7. N 6. P. 457-462. https://doi.org/10.1016/j.autrev.2008.03.017

Pasini E. M., Kirkegaard M., Mortensen P. et al. In-depth analysis of the membrane and cytosolic proteome of red blood cells // Blood. 2006. Vol. 108. N 3. P. 791-801. https://doi.org/10.1182/blood-2005-11-007799

Paulson R. F., Shi L., Wu D. C. Stress erythropoiesis: new signals and new stress progenitor cells // Curr. Opin. Hematol. 2011 May. Vol. 18(3). P. 139-145. https://doi.org/10.1097/MOH.0b013e32834521c8

Pulford K., Micklem R., McCarthy S. et al. A monocyte/macrophage antigen recognized by the four antibodies GHI/61, BerMAC3, Ki-M8 and SM4 // Immunology. 1992. Vol. 75. N 4. P. 588-595.

Qadri S. M., Bissinger R., Solh Z., Oldenborg, P.-A. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes // Blood Reviews. 2017. Vol. 31. N 6. P. 349-361. https://doi.org/10.1016/j.blre.2017.06.001

Rice L., Ruiz W., Driscoll T. et al. Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass // Ann. Intern. Med. 2001. Vol. 134. N 8. P. 652-656. 10.7326/0003-4819-134-8-200104170-00010 https://doi.org/10.7326/0003-4819-134-8-200104170-00010

Risso A., Ciana A., Achilli C. et al. Neocytolysis: none, one or many? A reappraisal and future perspectives // Front. Physiol. 2014. Vol. 5. P. 54. https://doi.org/10.3389/fphys.2014.00054

Risso A., Fabbro D., Damante G., Antonutto G. Expression of fetal hemoglobin in adult humans exposed to high altitude hypoxia // Blood Cells Mol. Dis. 2012. Vol. 48. N 3. P. 147-153. https://doi.org/10.1016/j.bcmd.2011.12.004

Schaer D. J., Schaer C. A., Buehler P. W. et al. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin // Blood. 2006. Vol. 107. N. 1. P. 373-380. https://doi.org/10.1182/blood-2005-03-1014

Schaer C. A., Vallelian F., Imhof A. et al. CD163- expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system // J. Leukoc Biol. 2007. Vol. 82. P. 106-110. https://doi.org/10.1189/jlb.0706453

Schaer D. J., Vinchi F., Ingoglia G. et al. Buehler Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development // Front. Physiol. 2014. Vol. 5. P. 415. https://doi.org/10.3389/fphys.2014.00415

Stijlemans B., Cnops J., Naniima P. et al. Development of a pHrodo-based assay for the assessment of in vitro and in vivo erythrophagocytosis during experimental trypanosomosis // PLoS Negl Trop Dis. 2015. Vol. 9 (3). P. e0003561. https://doi.org/10.1371/journal.pntd.0003561

Stowell S. R., Smith N. H., Zimring J. C. et al. Addition of ascorbic acid solution to stored murine red blood cells increases posttransfusion recovery and decreases microparticles and alloimmunization // Transfusion. 2013. Vol. 53. N 10. P. 2248-2257. https://doi.org/10.1111/trf.12106

Subramanian K., Ruijuan Du, Tan N. S. et al. CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms // J. Immunol. 2013. Vol. 190. N 10. P. 5267-5278. https://doi.org/10.4049/jimmunol.1202648

Thery C., Ostrowski M., Segura E. Membrane vesicles as conveyors of immune responses // Nat. Rev. Immunol. 2009. Vol. 9. N 8. P. 581-593. https://doi.org/10.1038/nri2567

Theurl I., Hilgendorf I., Nairz M. et al. Ondemand erythrocyte disposal and iron recycling requires transient macrophages in the liver // Nat. Med. 2016. Vol. 22. P. 945-951. https://doi.org/10.1038/nm.4146

Tiffert T., Bookchin R. M., Lew V. L. Calcium homeostasis in normal and abnormal human red cells. In Red Cell Membrane Transport in Health and Disease; Bernhardt, I., Ellory, C., Eds.; Springer Verlag: Heidelberg, Germany. 2003. P. 373-405. https://doi.org/10.1007/978-3-662-05181-8_15

Tissot J.-D., Canellini G, Rubin O. et al. Blood microvesicles: from proteomics to physiology // Translational Proteomic. 2013. Vol. 1. N 1. P. 38-52. https://doi.org/10.1016/j.trprot.2013.04.004

Tsai R. K., Discher D. E. Inhibition of ''self'' engulfment through deactivation of myosin-II at the phagocytic synapse between human cells // J. Cell Biol. 2008. Vol. 180. N 5. P. 989-1003. https://doi.org/10.1083/jcb.200708043

Tsai R. K., Rodriguez P. L., Discher D. E. Self inhibition of phagocytosis: the affinity of 'Marker of Self' CD47 for SIRPα dictates potency of inhibition but only at low expression levels // Blood Cells Mol. Dis. 2010. Vol. 45. N 1. P. 67-74. https://doi.org/10.1016/j.bcmd.2010.02.016

van den Berg T. K., van Beek E. M., Bühring H. J. et al. A nomenclature for signal regulatory protein family members // J. Immunol. 2005. Vol. 175. N 12. P. 7788-7789 https://doi.org/10.4049/jimmunol.175.12.7788

Wagner-Britz L., Wang J., Kaestner L., Bernhardt I. Protein kinase Calpha and P-type Ca channel CaV2.1 in red blood cell calcium signalling // Cell Physiol. Biochem. 2013. Vol. 31. N 6. P. 883-891. https://doi.org/10.1159/000350106

Waugh R. E., Narla M., Jackson C. W. et al. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age // Blood. 1992. Vol. 79. N 5. P. 1351-1358. https://doi.org/10.1182/blood.V79.5.1351.bloodjournal7951351

Wesseling M. C., Wagner-Britz L., Boukhdoud F. et al. Measurements of intracellular Ca2+ content and phosphatidylserine exposure in human red blood cells: methodological issues // Cell Physiol Biochem. 2016. Vol. 38. N 6. P. 2414-2425. https://doi.org/10.1159/000445593

Wiewiora M., Piecuch J., Sedek L. et al. The effects of obesity on CD47 expression in erythrocytes // Cytometry B Clin Cytom. 2017. Vol. 92. N 6. P. 485-491. https://doi.org/10.1002/cyto.b.21232

Willekens F. L., Were J. M., Groenen-Döpp Y. A. et al. Erythrocyte vesiculation: a self-protective mechanism? // Br. J. Haematol. 2008. Vol. 141. N 4. P. 549-556. https://doi.org/10.1111/j.1365-2141.2008.07055.x

Willekens F. L., Roerdinkholder-Stoelwinder B., Groenen-Döpp Y. A. et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation // Blood. 2003. Vol. 101. N 2. P. 747-&51. https://doi.org/10.1182/blood-2002-02-0500

Willekens F. L., Werre J. M., Kruijt J. K. et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors // Blood. 2005. Vol. 105. N 5. P. 2141-2145. https://doi.org/10.1182/blood-2004-04-1578

Zwadlo G., Voegeli R., Schulze Osthoff K., Sorg C. A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process // Exp. Cell Biol. 1987. Vol. 55. N 6. P. 295-304. https://doi.org/10.1159/000163432

Zweig S. E., Tokuyasu K. T., Singer S. J. Member-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes // J. Supramol. Struct. Cell Biochem. 1981. Vol. 17. P. 163-181. https://doi.org/10.1002/jsscb.380170207




DOI: http://dx.doi.org/10.30970/vlubs.2020.82.02

Посилання

  • Поки немає зовнішніх посилань.