КЛІТИННІ МЕХАНІЗМИ ЕРИТРОДІЕРЕЗУ
Анотація
У нормі еритродіерез перебуває в динамічній рівновазі з процесом еритропоезу, а отже, є одним із чинників, який забезпечує відносно постійну кількість еритроцитів у кров’яному руслі. Руйнування зазнають фізіологічно старі, пошкоджені та нежиттєздатні еритроцити, а також еритроцити, які утворилися під час стресового еритропоезу. Кліренс еритроцитів є селективним процесом. Із кровотоку насамперед вилучаються ті клітини, які втратили здатність до деформації. Здатність еритроцитів деформуватися залежить від форми клітин, в’язкості цитоплазми та механічних властивостей мембрани. Старі та змінені еритроцити є досить ригідними, а тому затримуються у вузьких капілярах і венозних синусах печінки й селезінки. Окрім того, макрофаги печінки та селезінки фагоцитують еритроцити, які на своїй поверхні експонують сигнальні молекули «з’їж мене». Експозиція фосфатидилсерину на зовнішній поверхні еритроцитів призводить до їхнього вилучення з кровотоку клітинами Купфера й іншими мононуклеарними фагоцитами. Під час ініціації еритрофагоцитозу фосфатидилсерин зовнішнього ліпідного шару плазматичної мембрани еритроцитів безпосередньо взаємодіє з рецепторами Stabilin-2, Tim-1, Tim-4 або CD300 макрофагів. Інтегрини макрофагів avb3 та avb5, а також рецептор Mer тирозинкінази опосередковано взаємодіють з фосфатидилсерином поверхні еритроцитів за допомогою розчинних протеїнів MFG-E8, Gas 6 і протеїну S. Кластеризація протеїну смуги 3 мембрани еритроцитів спричиняє зв’язування природних антитіл, а опсонізація еритроцитів за допомогою C3b підсилює цей процес і сприяє розпізнаванню таких клітин макрофагами червоної пульпи селезінки. У старіючих еритроцитах пригнічується утворення комплексу CD47-SIRPα (сигнал «не їж мене»), який гальмує їхній фагоцитоз, а відтак – з’являється додатковий стимул для захоплення еритроцитів макрофагами селезінки та печінки.
Мета огляду – описати механізми еритрофагоцитозу й молекулярні детермінанти старіння і загибелі еритроцитів, у тому числі ериптозу та неоцитолізу, висвітлити факти й суперечності, наявні на сучасному етапі вивчення цього питання.
Ключові слова
Повний текст:
PDFПосилання
Ataullakhanov F. Y., Korunova N. O., Spyrydonova Y. S. y dr. Kak rehulyruetsia obem erytrotsyta, yly chto mohut y cheho ne mohut matematycheskye modely v byolohyy // Byolohycheskye membrany. 2009. T. 26. № 3. S. 163-79.
Kaniuka O. P., Filiak Ye. Z., Kulachkovskyi O. R. ta in. Kilkisni zminy osnovnykh komponentiv erytrotsytarnoi membrany, shcho vyznachaiut arkhitektoniku klityn za nokautu hena pttg // Ukrainian Biochemical Journal. 2014. Vol. 86. N 2. S. 41-49.
Novytskyi V. V., Riazantseva N. V., Stepovaia E. A. Fyzyolohyia y patofyzyolohyia erytrotsyta. Tomsk: Yzd-vo Tomsk. un-ta, 2004. 200 s.
Rukovodstvo po hematolohyy / pod red. A.Y. Vorobeva. T. 3. M.: Niudyamed, 2005. 416 s.
Urazova O. Y., Novytskyi V. V. Laboratornaia dyahnostyka hematolohycheskykh syndromov y boleznei. Tomsk: Pechatnaia manufaktura, 2008. 97 s.
Alaarg A., Schiffelers R. M., van Solinge R. W., van Wijk R. Red blood cell vesiculation in hereditary hemolytic anemia // Front. Physiol. 2013. Vol. 4. P. 365. https://doi.org/10.3389/fphys.2013.00365
Alfrey C. P., Rice L., Udden M. M., Driscoll T. B. Neocytolysis: physiological down-regulator of red-cell mass // Lancet. 1997. Vol. 349. N 9062. P. 1389-1390. https://doi.org/10.1016/S0140-6736(96)09208-2
Arandjelovic S., Ravichandran K. S. Phagocytosis of apoptotic cells in homeostasis // Nat. Immunol. 2015. Vol. 16. N 9. P. 907-917. https://doi.org/10.1038/ni.3253
Arashiki N., Kimata N., Manno S. et al. Membrane peroxidation and methemoglobin formation are both necessary for band 3 clustering: mechanistic insights into human erythrocyte senescence // Biochemistry. 2013. Vol. 52. N 34. P. 5760-5769. https://doi.org/10.1021/bi400405p
Arndt P. A., Garratty G. Rh(null) red blood cells with reduced CD47 do not show increased interactions with peripheral blood monocytes // Br. J. Haematol. 2004. Vol. 125. N 3. P. 412-414. https://doi.org/10.1111/j.1365-2141.2004.04911.x
Barclay A. N., van den Berg T. K. The interaction between Signal Regulatory Protein Alpha (SIRPAlpha) and CD47: structure, function, and therapeutic target // Annu. Rev. Immunol. 2014. Vol. 32. P. 25-50. https://doi.org/10.1146/annurev-immunol-032713-120142
Bevers E., Comfurius P., Dekkers D., Zwaal R. Lipid translocation across the plasma membrane of mammalian cells // Biochim. Biophys. Acta. 1999. Vol. 1439. N 3. P. 317-330. https://doi.org/10.1016/S1388-1981(99)00110-9
Bogdanova A., Makhro A., Wang J. et al. Calcium in red blood cells-a perilous balance // Int. J. Mol. Sci. 2013. Vol. 14. P. 9848-9872. https://doi.org/10.3390/ijms14059848
Bookchin R. M., Lew V. L. Progressive inhibition of the Ca pump and Ca:Ca exchange in sickle red cells // Nature. 1980. Vol. 284. P. 561-563. https://doi.org/10.1038/284561a0
Bosman G. J. Survival of red blood cells after transfusion: processes and consequences // Front. Physiol. 2013. Vol. 4. P. 376. https://doi.org/10.3389/fphys.2013.00376
Bosman G. J., Willekens F. L., Werre J. M. Erythrocyte aging: a more than superficial resemblance to apoptosis? // Cell Physiol. Biochem. 2005. Vol. 16. P. 1-8. https://doi.org/10.1159/000087725
Brovelli A., Minetti G. Red cell ageing. In: Bernhardt I, Ellory JC (eds). Red Cell Membrane Transport in Health and Disease. Springer: Heidelberg, Germany, 2003. P. 673-690. https://doi.org/10.1007/978-3-662-05181-8_29
Bruce L. J., Ghosh S., King M. J. et al. Tanner Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex // Blood. 2002. Vol. 100. N 5. P. 1878-1885. https://doi.org/10.1182/blood-2002-03-0706
Burger P., Hilarius-Stokman P., de Korte D. et al. CD47 functions as a molecular switch for erythrocyte phagocytosis // Blood. 2012. Vol. 119. P. 5512-5521. https://doi.org/10.1182/blood-2011-10-386805
Burnier L., Fontana P., Kwak B. R., Angelillo-Scherrer F. Cell-derived microparticles in haemostasis and vascular medicine // Thromb. Haemost. 2009. Vol. 101. N 3. P. 439-451. https://doi.org/10.1160/TH08-08-0521
Catan A., Turpina C., Diotela N. et al. Aging and glycation promote erythrocyte phagocytosis by human endothelial cells: Potential impact in atherothrombosis under diabetic conditions // Atherosclerosis. 2019. Vol. 291. P. 87-98. https://doi.org/10.1016/j.atherosclerosis.2019.10.015
Chu H., Puchulu-Campanella E., Galan J. A. et al. Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. P. 12794-12799. https://doi.org/10.1073/pnas.1209014109
Ciana A., Achilli C., Gaur A., Minetti G. Membrane remodelling and vesicle formation during ageing of human red blood cells // Cell Physiol. Biochem. 2017. Vol. 42. N 3. P. 1127-1138. https://doi.org/10.1159/000478768
Ciana A., Achilli C., Minetti G. Spectrin and other membrane-skeletal components in human red blood cells of different age // Cell Physiol. Biochem. 2017. Vol. 42. N 3. P. 1139-1152. https://doi.org/10.1159/000478769
de Back D. Z., Kostova E. B., van Kraaij M. et al. Of macrophages and red blood cells; a complex love story // Front. Physiol. 2014. Vol. 5. P. 9. https://doi.org/10.3389/fphys.2014.00009
de Vooght K. M., Lau C., de Laat P. P. et al. Extracellular vesicles in the circulation: are erythrocyte microvesicles a confounder in the plasma haemoglobin assay? // Biochem. Soc. Trans. 2013. Vol. 41. N 1. P. 288-292. https://doi.org/10.1042/BST20120254
Derganc J., Bozic B., Svetina S., Zeks B. Equilibrium shapes of erythrocytes in rouleau formation // Biophys. J. 2003. Vol. 84. P. 1486-1492. https://doi.org/10.1016/S0006-3495(03)74961-3
Dyrda A., Cytlak U., Ciuraszkiewicz A. et al. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells // PLoS ONE. 2010. Vol. 5. N 2. P. e9447. https://doi.org/10.1371/journal.pone.0009447
Ensinck M. A., Brajovich M. E. L, Borrás S. G. et al. Erythrocyte senescent markers by flow cytometry // Open Journal of Blood Diseases. 2019. Vol. 09. N 03. P. 47-59. https://doi.org/10.4236/ojbd.2019.93006
Fader C. M., Colombo M. I. Multivesicular bodies and autophagy in erythrocyte maturation // Autophagy. 2006. Vol. 2. N 2. P. 122-125. https://doi.org/10.4161/auto.2.2.2350
Fedosov D. A., Dao M., Karniadakis G. E., Suresh S. Computational biorheology of human blood flow in health and disease // Ann. Biomed. Eng. 2014. Vol. 42. P. 368-387. https://doi.org/10.1007/s10439-013-0922-3
Fedosov D. A., Noguchi H., Gompper G. Multiscale modeling of blood flow: from single cells to blood rheology // Biomech. Model. Mechanobiol. 2014. Vol. 13. P. 239-258. https://doi.org/10.1007/s10237-013-0497-9
Fens M. H., van Wijk R., Andringa G. et al. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology // Haematologica. 2012. Vol. 97. P. 500-508. https://doi.org/10.3324/haematol.2011.048694
Flannagan R. S., Jaumouille V., Grinstein S. The cell biology of phagocytosis // Annu. Rev. Pathol. 2012. Vol. 7. P. 61-98. https://doi.org/10.1146/annurev-pathol-011811-132445
Foller M., Kasinathan R. S., Koka S. et al. TRPC6 contributes to the Ca(2+) leak of human erythrocytes // Cell Physiol. Biochem. 2008. Vol. 21. N 1-3. P. 183-192. https://doi.org/10.1159/000113760
Franco R. S. The measurement and importance of red cell survival // Am. J. Hematol. 2009. Vol. 84. P. 109-114. doi: 10.1002/ajh.21298 https://doi.org/10.1002/ajh.21298
Franco R. S., Puchulu-Campanella M. E., Barber L. A. et al. Changes in the properties of normal human red blood cells during in vivo aging // Am. J. Hematol. 2013. Vol. P. 44-51. https://doi.org/10.1002/ajh.23344
Fujioka Y., Matozaki T., Noguchi T. et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2- domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion // Mol. Cell. Biol. 1996. Vol. 16. N 12. P. 6887-6899. https://doi.org/10.1128/MCB.16.12.6887
Gao A. G., Frazier W. A. Identification of a receptor candidate for the carboxyl-terminal cell binding domain of thrombospondins // J. Biol. Chem. 1994. Vol. 269. N 47. P. 29650-29657.
Gardai S. J., McPhillips K. A., Frasch S. C. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte // Cell. 2005. Vol. 123. P. 321-334. https://doi.org/10.1016/j.cell.2005.08.032
Gincel D., Silberberg S. D., Shoshan-Barmatz V. Modulation of the voltage-dependent anion channel (VDAC) by glutamate // J. Bioenerg. Biomembr. 2000. Vol. 32. N 6. P. 571-583. https://doi.org/10.1023/A:1005670527340
Ghashghaeinia M., Cluitmans J. C. A., Akel A. et al. The impact of erythrocyte age on eryptosis // Br. J. Haematol. 2012. Vol. 157. N 5. P. 606-614. https://doi.org/10.1111/j.1365-2141.2012.09100.x
Gompper G., Fedosov D. A. Modeling microcirculatory blood flow: current state and future perspectives // Wiley Interdiscip. Rev. Syst. Biol. Med. 2016. Vol. 8. 157-168. https://doi.org/10.1002/wsbm.1326
Graham T. Flippases and vesicle-mediated protein transport // Trends Cell Biol. 2004. Vol. 14. N 12. P. 670-677. https://doi.org/10.1016/j.tcb.2004.10.008
Harisa G. I., Badran M. M., Alanazi F. K. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach: Erythrocyte nanovesicles // Saudi Pharm J. 2017. Vol. 25. N 1. P. 8-17. https://doi.org/10.1016/j.jsps.2015.06.010
Holroyde C. P., Gardner F. H. Acquisition of autophagic vacuoles by human erythrocytes. Physiological role of the spleen // Blood. 1970. Vol. 36. P. 566-575. https://doi.org/10.1182/blood.V36.5.566.566
Hornig R., Lutz H. U. Band 3 protein clustering on human erythrocytes promotes binding of naturally occurring anti-band 3 and anti-spectrin antibodies // Exp. Gerontol. 2000. Vol. 35. N 8. P. 1025-1044. https://doi.org/10.1016/S0531-5565(00)00126-1
Jank H., Salzer U. Vesicles generated during storage of red blood cells enhance the generation of radical oxygen species in activated neutrophils // Sci. World J. 2011. Vol. 11. P. 173-185. https://doi.org/10.1100/tsw.2011.25
Kaestner L. Cation channels in erythrocytes - historical and future perspective // Open Biol. J. 2011. Vol. 4. P. 27-34. https://doi.org/10.2174/1874196701104010027
Kaestner L., Minetti G. The potential of erythrocytes as cellular aging models // Cell Death & Differentiation. 2017. Vol. 24. P. 1475-1477. https://doi.org/10.1038/cdd.2017.100
Kay M. M. Band 3 and its alterations in health and disease // Cell. Mol. Biol. 2004. Vol. 50. N 2. P. 117-138.
Kent G., Minick O. T., Volini F. I., Orfei E. Autophagic vacuoles in human red cells // Am. J. Pathol. 1966. Vol. 48. P. 831-857.
Khera R., Das N. Complement Receptor 1: Disease associations and therapeutic implications // Mol. Immunol. 2009. Vol. 46. N 5. P. 761-772. https://doi.org/10.1016/j.molimm.2008.09.026
Knowles D., Tilley L., Mohandas N., Chasis J. Erythrocyte membrane vesiculation: model for the molecular mechanism of protein sorting // Proc. Natl. Acad. Sci. USA. 1997. Vol. 94. N 24. P. 12969-12974. https://doi.org/10.1073/pnas.94.24.12969
Kolb S., Vranckx R., Huisse M.-G. et al. The phosphatidylserine receptor mediates phagocytosis by vascular smooth muscle cells // J. Pathol. 2007. Vol. 212. N 3. P. 249-259. https://doi.org/10.1002/path.2190
Kristiansen M., Graversen J. H., Jacobsen C. et al. Identification of the haemoglobin scavenger receptor // Nature. 2001. Vol. 409. N 6817. P. 198-201. https://doi.org/10.1038/35051594
Kuchel P. W., Shishmarev D. Accelerating metabolism and transmembrane cation flux by distorting red blood cells // Sci. Adv. 2017. Vol. 3. N 10. P. eaao1016. https://doi.org/10.1126/sciadv.aao1016
Lang F., Gulbins E., Lang P. A. et al. Ceramide in suicidal death of erythrocytes // Cell. Physiol. Biochem. 2010. Vol. 26. N 1. P. 21-28. https://doi.org/10.1159/000315102
Lang F., Gulbins E., Lerche H. et al. Eryptosis,a window to systemic disease // Cell Physiol. Biochem. 2008. Vol. 22. P. 373-80. https://doi.org/10.1159/000185448
Lang F., Qadri S. M. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes // Blood Purification. 2012. Vol. 33. N 1-3. P. 125-130. https://doi.org/10.1159/000334163
Lang K. S., Duranton C., Poehlmann H. et al. Cation channels trigger apoptotic death of erythrocytes // Cell Death Differ. 2003. Vol. 10. P. 249-256. https://doi.org/10.1038/sj.cdd.4401144
Lang K. S., Lang P. A., Bauer C. et al. Mechanisms of suicidal erythrocyte death // Cell Physiol. Biochem. 2005. Vol. 15. N 5. P. 195-202. https://doi.org/10.1159/000086406
Lang K. S., Myssina S., Brand V. et al. Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes // Cell Death Differ. 2004. Vol. 11. N 2. P. 231-243. https://doi.org/10.1038/sj.cdd.4401311
Lang P. A., Kempe D. S., Tanneur V. et al. Stimulation of erythrocyte ceramide formation by platelet-activating factor // J. Cell Sci. 2005. Vol. 118. P. 1233-1243. https://doi.org/10.1242/jcs.01730
Lanotte L., Mauer J., Mendez S. et al. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions // Proc. Natl. Acad. Sci. 2016. Vol. 113. P. 13289-13294. https://doi.org/10.1073/pnas.1608074113
Levy A. P., Asleh R., Blum S. et al. Haptoglobin: basic and clinical aspects. Antioxid Redox Signal. 2010. Vol. 12. N 2. P. 293-304. https://doi.org/10.1089/ars.2009.2793
Lew V. L., Daw N., Etzion Z. et al. Effects of age-dependent membrane transport changes on the homeostasis of senescent human red blood cells // Blood. 2007. Vol. 110. P. 1334-1342. https://doi.org/10.1182/blood-2006-11-057232
Lew V. L., Raftos J. E., Sorette M. P. e al. Generation of normal human red cell volume, hemoglobin content and membrane area distributions, by "birth" or regulation? // Blood. 1995. Vol. 86. P. 334-341. https://doi.org/10.1182/blood.V86.1.334.bloodjournal861334
Lew V. L., Tiffert T. On the mechanism of human red blood cell longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels // Front Physiol. 2017. Vol. 12. N 8. P. 977. https://doi.org/10.3389/fphys.2017.00977
Lutz H. U., Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans // Front. Physiol. 2013. Vol. 4. P. 387. https://doi.org/10.3389/fphys.2013.00387
Lutz H. U. Naturally occurring anti-band 3 antibodies in clearance of senescent and oxidatively stressed human red blood cells // Transfus Med Hemother. 2012. Vol. 39. N 5. P. 321-327. https://doi.org/10.1159/000342171
Lutz H. U., Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans // Front Physiol. 2013. Vol. 4. P. 387. https://doi.org/10.3389/fphys.2013.00387
Maher A. D., Kuchel P. W. The Gárdos channel: a review of the Ca2+-activated K+ channel in human erythrocytes // Int. J. Biochem. Cell Biol. 2003. Vol. 35. N 8. P. 1182-1197. https://doi.org/10.1016/S1357-2725(02)00310-2
Mairbäurl H. Neocytolysis: how to get rid of the extra erythrocytes formed by stress erythropoiesis upon descent from high altitude // Front Physiol. 2018. Vol. 9. P. 345. https://doi.org/10.3389/fphys.2018.00345
Makhro A., Wang J., Vogel J. et al. Functional NMDA receptors in rat erythrocytes // Am. J. Physiol. Cell Physiol. 2010. Vol. 298. N 6. P. C1315-C1325. https://doi.org/10.1152/ajpcell.00407.2009
Makhro A., Hanggi P., Goede J. et al. N-Methyl d-Aspartate (NMDA) receptors in erythroid precursor cells and in circulating human red blood cells contributes to the regulation of intracellular calcium levels // Am. J. Physiol. 2013. Vol. 305. N 11. P. C1123-C1138. https://doi.org/10.1152/ajpcell.00031.2013
Mandal D., Mazumder A., Das P. et al. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes // J. Biol. Chem. 2005. Vol. 280. P. 39460-39467. https://doi.org/10.1074/jbc.M506928200
Matozaki T., Murata Y., Okazawa H., Ohnishi H. Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway // Trends Cell Biol. 2009. Vol. 19. N 2. P. 72-80. https://doi.org/10.1016/j.tcb.2008.12.001
Mehdi M. M., Singh P., Rizvi S. I. Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress // Dis Markers. 2012. Vol. 32. N 3. P. 179-186. https://doi.org/10.1155/2012/293429
Melhorn M. I., Brodsky A. S., Estanislau J. et al. CR1-mediated ATP Release by Human Red Blood Cells Promotes CR1 Clustering and Modulates the Immune Transfer Process // J. Biol. Chem. 2013. Vol. 288. N 43. P. 31139-31153. https://doi.org/10.1074/jbc.M113.486035
Miller Y. E., Daniels G. L., Jones C., Palmer D. K. Identification of a cell-surface antigen produced by a gene on human chromosome 3 (cen-q22) and not expressed by Rhnull cells // Am. J. Hum. Genet. 1987. Vol. 41. N 6. P. 1061-1070.
Morel O., Jesel L., Freyssinet J., Toti F. Cellular mechanisms underlying the formation of circulating microparticles // Arterioscler. Thromb. Vasc. Biol. 2011. Vol. 31. N 1. P. 15-26. https://doi.org/10.1161/ATVBAHA.109.200956
Neelam S., Kakhniashvili D. G., Wilkens S. et al. Functional 20S proteasomes in mature human red blood cells // Exp. Biol. Med (Maywood). 2011. Vol. 236. N 5. P. 580-591. https://doi.org/10.1258/ebm.2011.010394
Nilsson A., Vesterlund L., Oldenborg P. A. Macrophage expression of LRP1, a receptor for apoptotic cells and unopsonized erythrocytes, can be regulated by glucocorticoids // Biochem. Biophys. Res, Commun. 2012. Vol. 417. N 4. P. 1304-1309. https://doi.org/10.1016/j.bbrc.2011.12.137
Olsson M., Nilsson A., Oldenborg P. A. Dose-dependent inhibitory effect of CD47 in macrophage uptake of IgG-opsonized murine erythrocytes // Biochem. Biophys. Res. Commun. 2007. Vol. 352. N 1. P. 193-197. https://doi.org/10.1016/j.bbrc.2006.11.002
Pantaleo A., Giribaldi G., Mannu F. et al. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions // Autoimmun. Rev. 2008. Vol. 7. N 6. P. 457-462. https://doi.org/10.1016/j.autrev.2008.03.017
Pasini E. M., Kirkegaard M., Mortensen P. et al. In-depth analysis of the membrane and cytosolic proteome of red blood cells // Blood. 2006. Vol. 108. N 3. P. 791-801. https://doi.org/10.1182/blood-2005-11-007799
Paulson R. F., Shi L., Wu D. C. Stress erythropoiesis: new signals and new stress progenitor cells // Curr. Opin. Hematol. 2011 May. Vol. 18(3). P. 139-145. https://doi.org/10.1097/MOH.0b013e32834521c8
Pulford K., Micklem R., McCarthy S. et al. A monocyte/macrophage antigen recognized by the four antibodies GHI/61, BerMAC3, Ki-M8 and SM4 // Immunology. 1992. Vol. 75. N 4. P. 588-595.
Qadri S. M., Bissinger R., Solh Z., Oldenborg, P.-A. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes // Blood Reviews. 2017. Vol. 31. N 6. P. 349-361. https://doi.org/10.1016/j.blre.2017.06.001
Rice L., Ruiz W., Driscoll T. et al. Neocytolysis on descent from altitude: a newly recognized mechanism for the control of red cell mass // Ann. Intern. Med. 2001. Vol. 134. N 8. P. 652-656. 10.7326/0003-4819-134-8-200104170-00010 https://doi.org/10.7326/0003-4819-134-8-200104170-00010
Risso A., Ciana A., Achilli C. et al. Neocytolysis: none, one or many? A reappraisal and future perspectives // Front. Physiol. 2014. Vol. 5. P. 54. https://doi.org/10.3389/fphys.2014.00054
Risso A., Fabbro D., Damante G., Antonutto G. Expression of fetal hemoglobin in adult humans exposed to high altitude hypoxia // Blood Cells Mol. Dis. 2012. Vol. 48. N 3. P. 147-153. https://doi.org/10.1016/j.bcmd.2011.12.004
Schaer D. J., Schaer C. A., Buehler P. W. et al. CD163 is the macrophage scavenger receptor for native and chemically modified hemoglobins in the absence of haptoglobin // Blood. 2006. Vol. 107. N. 1. P. 373-380. https://doi.org/10.1182/blood-2005-03-1014
Schaer C. A., Vallelian F., Imhof A. et al. CD163- expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system // J. Leukoc Biol. 2007. Vol. 82. P. 106-110. https://doi.org/10.1189/jlb.0706453
Schaer D. J., Vinchi F., Ingoglia G. et al. Buehler Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development // Front. Physiol. 2014. Vol. 5. P. 415. https://doi.org/10.3389/fphys.2014.00415
Stijlemans B., Cnops J., Naniima P. et al. Development of a pHrodo-based assay for the assessment of in vitro and in vivo erythrophagocytosis during experimental trypanosomosis // PLoS Negl Trop Dis. 2015. Vol. 9 (3). P. e0003561. https://doi.org/10.1371/journal.pntd.0003561
Stowell S. R., Smith N. H., Zimring J. C. et al. Addition of ascorbic acid solution to stored murine red blood cells increases posttransfusion recovery and decreases microparticles and alloimmunization // Transfusion. 2013. Vol. 53. N 10. P. 2248-2257. https://doi.org/10.1111/trf.12106
Subramanian K., Ruijuan Du, Tan N. S. et al. CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms // J. Immunol. 2013. Vol. 190. N 10. P. 5267-5278. https://doi.org/10.4049/jimmunol.1202648
Thery C., Ostrowski M., Segura E. Membrane vesicles as conveyors of immune responses // Nat. Rev. Immunol. 2009. Vol. 9. N 8. P. 581-593. https://doi.org/10.1038/nri2567
Theurl I., Hilgendorf I., Nairz M. et al. Ondemand erythrocyte disposal and iron recycling requires transient macrophages in the liver // Nat. Med. 2016. Vol. 22. P. 945-951. https://doi.org/10.1038/nm.4146
Tiffert T., Bookchin R. M., Lew V. L. Calcium homeostasis in normal and abnormal human red cells. In Red Cell Membrane Transport in Health and Disease; Bernhardt, I., Ellory, C., Eds.; Springer Verlag: Heidelberg, Germany. 2003. P. 373-405. https://doi.org/10.1007/978-3-662-05181-8_15
Tissot J.-D., Canellini G, Rubin O. et al. Blood microvesicles: from proteomics to physiology // Translational Proteomic. 2013. Vol. 1. N 1. P. 38-52. https://doi.org/10.1016/j.trprot.2013.04.004
Tsai R. K., Discher D. E. Inhibition of ''self'' engulfment through deactivation of myosin-II at the phagocytic synapse between human cells // J. Cell Biol. 2008. Vol. 180. N 5. P. 989-1003. https://doi.org/10.1083/jcb.200708043
Tsai R. K., Rodriguez P. L., Discher D. E. Self inhibition of phagocytosis: the affinity of 'Marker of Self' CD47 for SIRPα dictates potency of inhibition but only at low expression levels // Blood Cells Mol. Dis. 2010. Vol. 45. N 1. P. 67-74. https://doi.org/10.1016/j.bcmd.2010.02.016
van den Berg T. K., van Beek E. M., Bühring H. J. et al. A nomenclature for signal regulatory protein family members // J. Immunol. 2005. Vol. 175. N 12. P. 7788-7789 https://doi.org/10.4049/jimmunol.175.12.7788
Wagner-Britz L., Wang J., Kaestner L., Bernhardt I. Protein kinase Calpha and P-type Ca channel CaV2.1 in red blood cell calcium signalling // Cell Physiol. Biochem. 2013. Vol. 31. N 6. P. 883-891. https://doi.org/10.1159/000350106
Waugh R. E., Narla M., Jackson C. W. et al. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age // Blood. 1992. Vol. 79. N 5. P. 1351-1358. https://doi.org/10.1182/blood.V79.5.1351.bloodjournal7951351
Wesseling M. C., Wagner-Britz L., Boukhdoud F. et al. Measurements of intracellular Ca2+ content and phosphatidylserine exposure in human red blood cells: methodological issues // Cell Physiol Biochem. 2016. Vol. 38. N 6. P. 2414-2425. https://doi.org/10.1159/000445593
Wiewiora M., Piecuch J., Sedek L. et al. The effects of obesity on CD47 expression in erythrocytes // Cytometry B Clin Cytom. 2017. Vol. 92. N 6. P. 485-491. https://doi.org/10.1002/cyto.b.21232
Willekens F. L., Were J. M., Groenen-Döpp Y. A. et al. Erythrocyte vesiculation: a self-protective mechanism? // Br. J. Haematol. 2008. Vol. 141. N 4. P. 549-556. https://doi.org/10.1111/j.1365-2141.2008.07055.x
Willekens F. L., Roerdinkholder-Stoelwinder B., Groenen-Döpp Y. A. et al. Hemoglobin loss from erythrocytes in vivo results from spleen-facilitated vesiculation // Blood. 2003. Vol. 101. N 2. P. 747-&51. https://doi.org/10.1182/blood-2002-02-0500
Willekens F. L., Werre J. M., Kruijt J. K. et al. Liver Kupffer cells rapidly remove red blood cell-derived vesicles from the circulation by scavenger receptors // Blood. 2005. Vol. 105. N 5. P. 2141-2145. https://doi.org/10.1182/blood-2004-04-1578
Zwadlo G., Voegeli R., Schulze Osthoff K., Sorg C. A monoclonal antibody to a novel differentiation antigen on human macrophages associated with the down-regulatory phase of the inflammatory process // Exp. Cell Biol. 1987. Vol. 55. N 6. P. 295-304. https://doi.org/10.1159/000163432
Zweig S. E., Tokuyasu K. T., Singer S. J. Member-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes // J. Supramol. Struct. Cell Biochem. 1981. Vol. 17. P. 163-181. https://doi.org/10.1002/jsscb.380170207
DOI: http://dx.doi.org/10.30970/vlubs.2020.82.02
Посилання
- Поки немає зовнішніх посилань.