ELECTRONIC PROPERTIES OF Ga-DOPED As-Se-Te GLASSES

Yaroslav Shpotyuk, Adam Ingram, Andriy Luchechko, Dmytro Slobodzyan, Markiyan Kushlyk, Oleh Kravets, Mykhaylo Shpotyuk, Roman Golovchak

Abstract


Introduction. The As-Se-Te system attracts significant attention since these chalcogenide glasses are endowed with unique semiconductor and optical characteristics. The wide infrared transparency, non-linearity, and ease of molding capability in these glasses render them promising candidates for electronic and photonic applications. However, the solubility of rare earth ions in chalcogenide matrices is generally low, restricting their applications. The addition of Ga is known to improve apparent solubility, but the intrinsic electrical characteristics of Ga-doped As-Se-Te glasses remain unexplored.

Materials and Methods. Chalcogenide glasses of the As-Se-Te system doped with Ga were explored. Samples were obtained from high-purity precursor using the melt-quenching method. Optical, structural, and electronic properties of the studied samples were investigated using high-resolution X-ray photoelectron spectroscopy (XPS), impedance spectroscopy, and optical spectroscopy.

Results. The incorporation of both Ga and Te leads to a decrease in the optical bandgap compared to binary As2Se3 glass. The valence band XPS spectra of the studied glasses reveal characteristic features similar to other binary and ternary chalcogenides, reflecting contributions from Se, Te, As, and Ga electronic states. These results indicate that the electronic structure is strongly influenced by chalcogen–As(Ga) bonding, which affects the valence band density of states and associated defect-related phenomena. The temperature-dependent DC conductivity demonstrates multiple conduction mechanisms. Incorporation of Ga lowers the high-temperature activation energy slightly, indicating modifications of the conduction process, while Te-containing samples exhibit even higher activation energies, suggesting contributions from hopping mechanisms and defect-related states.

Conclusions. The influence of Ga and Te on the optical and electronic properties of As2Se3-based chalcogenide glasses is studied using optical and impedance spectroscopies. Electronic properties of Ga-modified As-Se-Te glasses are shown to be important for their applications in optoelectronic integrated platforms. The obtained results are correlated to the valence band structure of these materials determined through XPS.

Keywords: chalcogenide glass, DC conductivity, bandgap, temperature dependence.


Full Text:

PDF

References


  1. Seddon, A.B., Farries, M.C., Nunes J.J., Xiao, B., Furniss D., Barney, E., Phang, S., Chahal, S., Kalfagiannis, N., Sojka, Ł. & Sujecki, S. (2024). Short review and prospective: chalcogenide glass mid-infrared fibre lasers. Eur. Phys. J. Plus, 139, 142. https://doi.org/10.1140/epjp/s13360-023-04841-1
  2. Musgraves, J.D. (2024) Chalcogenide glasses: Engineering in the infrared spectrum. American Ceramic Society Bulletin, 103(4), 22. https://bulletin.ceramics.org/article/chalcogenide-glasses-engineering-in-the-infrared-spectrum/
  3. Adam, J-L. & Zhang X. (2014). Chalcogenide Glasses: Preparation, properties and application. Oxford, Cambridge: Woodhead Publishing series in Electronic and Optical Materials, 704. ISBN 0857093568, 9780857093561
  4. Golovchak, R., Plummer, J., Kovalskiy, A., Holovchak, Y., Ignatova, T., Trofe, A., Mahlovanyi, B., Cebulski, J., Krzeminski, P., Shpotyuk, Y., Boussard-Pledel, C. & Bureau, B. (2023). Phase-change materials based on amorphous equichalcogenides. Scientific Reports, 13, 2881. https://doi.org/10.1038/s41598-023-30160-7
  5. Fritzsche, H. (2007). Why are chalcogenide glasses the materials of choice for Ovonic switching devices? Journal of Physics and Chemistry of Solids, 68, 878–882. https://doi.org/10.1016/j.jpcs.2007.01.017
  6. Cui, S., Chahala, R., Shpotyuk, Y., Boussard, C., Lucas, J., Charpentier, F., Tariel, H., Loréal, O., Nazabal, V., Sire, O., Monbet, V., Yang, Z., Lucas, P. & Bureau, B. (2014). Selenide and telluride glasses for mid-infrared bio-sensing. Proceedings of SPIE, 8938, 893805. https://doi.org/10.1117/12.2036734
  7. Eggleton, B.J., Luther-Davies, B. & Richardson, K. (2011). Chalcogenide photonics. Nature Photonics, 5, 141–148. https://doi.org/10.1038/nphoton.2011.309
  8. Yu, Q., Wang, Sh., Fu, Y., Tan, L., Gao, Ch., Lin, Ch. & Kang, Sh. (2024). Highly Er3+-doped chalcogenide glass with enhanced mid-infrared emission and superior mechanical property. Optics Express, 32(26), 46131-46139. https://doi.org/10.1364/OE.544914
  9. Blanc, W., Choi, Y.G., Zhang, X., Nalin, M., Richardson, K.A., Righini, G.C., Ferrari, M., Jha, A., Massera, J., Jiang, S., Ballato, J. & Petit, L. (2023). The past, present and future of photonic glasses: A review in homage to the United Nations International Year of Glass 2022. Progress in Materials Science, 134, 101084. https://doi.org/10.1016/j.pmatsci.2023.101084
  10. Seznec, V., Ma, H., Zhang, X., Nazabal, V., Adam, J.-L., Qiao, X.S. & Fan, X.P. (2006). Spectroscopic properties of Er3+-doped chalcohalide glass ceramics. Proceedings of SPIE, 6116, 61160B–1–9. https://doi.org/10.1117/12.645909
  11. Aitken, B.G., Ponader, C.W., & Quimby, R.S. (2002). Clustering of rare earths in Ge–As sulfide glass. Comptes Rendus Chimie, 5(12), 865-872. https://doi.org/10.1016/S1631-0748(02)01458-3
  12. Choi, Y.G., Kim, K.H., Lee, B.J., Shin, Y.B., Kim, Y.S. & Heo, J. (2000). Emission properties of the Er3+:4I11/24I13/2 transition in Er3+- and Er3+/Tm3+-doped Ge–Ga–As–S glasses. Journal of Non-Crystalline Solids, 278, 137-144. https://doi.org/10.1016/S0022-3093(00)00331-8
  13. Shpotyuk, Y., Bureau, B., Boussard-Pledel, C., Nazabal, V., Golovchak, R., Demchenko, P. & Polovynko, I. (2014). Effect of Ga incorporation in the As30Se50Te20 glass. Journal of Non-Crystalline Solids, 398–399, 19–25. https://doi.org/10.1016/j.jnoncrysol.2014.04.021
  14. Shpotyuk, Y., Boussard-Pledel, C., Nazabal, V., Chahal, R., Ari, J., Pavlyk, B., Cebulski, J., Doualan, J.L. & Bureau, B. (2015). Ga-modified As2Se3–Te glasses for active applications in IR photonics. Optical Materials, 46, 228–232. https://doi.org/10.1016/j.optmat.2015.04.024
  15. Moulder, J.F., Stickle, W.F., Sobol, P.E. & Bomben, K.D. (1992). Handbook of X-ray photoelectron spectroscopy (J. Chastein, Ed.). Eden Prairie, MN: Perkin-Elmer Corp., Physical Electronics Division. Retrieved from https://www.phi.com/
  16. Ganjoo, A. & Golovchak, R. (2008). Computer program PARAV for calculating optical constants of thin films and bulk materials: Case study of amorphous semiconductors. Journal of Optoelectronics and Advanced Materials, 10, 1328–1332. Retrieved from http://joam.inoe.ro/
  17. Feltz, A. (1993). Amorphous inorganic materials and glasses. Weinheim, Germany: VCH, 477. ISBN 3527284214, 9783527284214.
  18. Mott, N.F. & Davis, E.A. (1979). Electronic processes in non-crystalline materials. Oxford, England: Clarendon Press.
  19. Golovchak, R., Plummer, J., Kovalskiy, A., Ingram, A., Kozdras, A., Ignatova, T., Trofe, A., Boussard-Pledel, C. & Bureau, B. (2024). Effect of Bi additive on the physi­cal properties of Ge2Se3-based equichalcogenide glasses and thin films. ACS Applied Electronic Materials, 6(4), 2720–2727. https://doi.org/10.1021/acsaelm.4c00263
  20. Popescu, M. (2000). Non-crystalline chalcogenides. New York, NY: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47129-9
  21. Golovchak, R., Plummer, J., Kovalskiy, A., Holovchak, Y., Ignatova, T., Nowlin, K., Trofe, A., Shpotyuk, Y., Boussard-Pledel, C. & Bureau, B. (2022). Broadband photosensitive medium based on amorphous equichalcogenides. ACS Applied Electronic Materials, 4(11), 5397–5405. https://doi.org/10.1021/acsaelm.2c01075
  22. Golovchak, R., Shpotyuk, O. & Kovalskiy, A. (2023). High-resolution XPS for determining the chemical order in chalcogenide network glasses. Journal of Non-Crystalline Solids: X, 18, 100188. https://doi.org/10.1016/j.nocx.2023.100188




DOI: http://dx.doi.org/10.30970/eli.31.12

Refbacks

  • There are currently no refbacks.