ENERGY CONSERVATION AS ONE OF THE COMPONENTS OF THE MANAGEMENT SYSTEM FOR THE SMART SUSTAINABLE WORKSPACES

Maksym Yakubovych, Vasyl Lyashkevych, Roman Shuvar

Abstract


Background. "Smart technologies" have grown rapidly thanks to advanced achievements in artificial intelligence (AI) and IoT. Big companies are interested in the concept of "smart rooms" or "smart workplaces" because these technologies allow them to reduce the costs of maintaining workplaces and focus on sustainable production without redundant waste.

Energy conservation is a crucially important part of a smart sustainable workplace management system therefore it has been analyzed in this paper. Considering the features of smart workplaces we highlighted that this approach offers a flexible and convenient way to make the workplace more comfortable and productive with a more accurate device management strategy.

Materials and Methods. Aiming our goals we have investigated the tasks which were related to models and methodologies for energy consumption management based on accessible technical resources and standards. Thus, we have used a systematic approach to selecting material, methods of inductive and logical analysis, observation and so on. The appropriate sensors and devices for energy management in smart workplaces were considered as well.

Results and Discussion. We paid the most attention to the devices available to us, such as Google Home, Mi Home, and Domoticz and their predefined functional characteristics. Amidst models, the most widespread ones for energy management were reviewed. Specifically noting that energy management in smart workplaces based on fuzzy logic does not require a complex mathematical model for system management and can rely directly on the experience of qualitative users.

Conclusion. Taking into account other components of a smart sustainable working space management system, we can conclude that modern information technologies and data analytics are becoming powerful tools for optimizing energy consumption and enhancing comfort and productivity in working spaces.

Keywords: smart sustainable workplace, smart sustainable workplace management system, energy consumption, energy conservation, adaptive-intelligent management.


Full Text:

PDF

References


  1. MINOLI, Daniel; SOHRABY, Kazem; OCCHIOGROSSO, Benedict. IoT considerations, requirements, and architectures for smart buildings—Energy optimization and next-generation building management systems. IEEE Internet of Things Journal, 2017, 4.1: 269-283.
  2. SAPNA, R., et al. Smart Workspace Automation: Harnessing IoT and AI for Sustainable Urban Development and Improved Quality of Life. In: IoT and Machine Learning for Smart Applications. Chapman and Hall/CRC, 2025. p. 163-177.
  3. ALGUNAIBET, Ibrahim M., et al. Powering sustainable development within planetary boundaries. Energy & environmental science, 2019, 12.6: 1890-1900.
  4. Tohid Kamali Rousta. From a Traditional Workplace to a sustainable smart office. Rel. Anna Osello, Francesca Maria Ugliotti. Politecnico di Torino, Corso di laurea magistrale in Architettura Per Il Progetto Sostenibile, 2023
  5. Hnin, Su Wutyi et al. “Workplace sustainability: energy-saving behaviors in office environments of Thailand”. Frontiers in psychology vol. 16 1400410. 4 Mar. 2025, https://doi.org/10.3389/fpsyg.2025.1400410
  6. Ramli, H.; Azizi, Z.M.; Thurairajah, N. Sustainable Smart City Technologies and Their Impact on Users’ Energy Consumption Behaviour. Energies 2024, 17, 771. https://doi.org/10.3390/en17040771
  7. Ozarslan Dogan, B. (2024), “The role of smart cities in sustainable development: empirical evidence from Türkiye", EconomiA, Vol. 25 No. 3, pp. 422-438. https://doi.org/10.1108/ECON-07-2023-0108
  8. Ali, D.M.T.E.; Motuzienė, V.; Džiugaitė-Tumėnienė, R. AI-Driven Innovations in Building Energy Management Systems: A Review of Potential Applications and Energy Savings. Energies 2024, 17, 4277. https://doi.org/10.3390/en17174277
  9. Wang, Z., Zhao, Y., Long, Y., Shi, X., Chen, X., & Dilnutt, R. Integrating IoT Technologies for Smart Office Energy Management: A TOGAF® ADM-Guided Approach. October 20, 2024.
  10. CORDERO, A. Cobaleda, et al. Smart and Sustainable Offices (SSO): Showcasing a holistic approach to realise the next generation offices. Informes de la Construcción, 2017, 69.548: e221.
  11. Gennitsaris, S.; Oliveira, M.C.; Vris, G.; Bofilios, A.; Ntinou, T.; Frutuoso, A.R.; Queiroga, C.; Giannatsis, J.; Sofianopoulou, S.; Dedoussis, V. Energy Efficiency Management in Small and Medium-Sized Enterprises: Current Situation, Case Studies and Best Practices. Sustainability 2023, 15, 3727. https://doi.org/10.3390/su15043727
  12. Ball, K. (2010). Workplace surveillance: an overview. Labor History, 51(1), 87–106. https://doi.org/10.1080/00236561003654776
  13. Огірко І. В., ІНФОРМАЦІЙНІ ТЕХНОЛОІЇ ТА КІБЕРБЕЗПЕКА . Інформаційні технології в освіті та практиці : матеріали Науково-практичної конференції (Львів) . – Львів : ЛьвДУВС, 2023.С. 51- 52
  14. Parubochyi V. O. Performance Evaluation of Self-Quotient Image Methods / V. O. Parubochyi, R. Y. Shuvar // Ukrainian Journal of Information Technologies, 2020. – Volume 2. – Number 1. P. 8–14. https://doi.org/10.23939/ujit2020.02.008
  15. Kaskun O. Face emotion recognition with convolutional neural network / O. Kaskun, R. Shuvar, A. Prodyvus // Electronics and information technologies. – 2020. – Issue 13. – P. 38–49. https://doi.org/10.30970/eli.13.4
  16. Аршан Є. В. Система адаптивного контролю освітлення [Електронний ресурс] / Аршан Є. В. // Сучасні виклики і актуальні проблеми науки, освіти та виробництва. Київ: матеріали конференції. 2020. С. 554–563.
  17. Котунова Д. Г. Огляд DIY елементів для систем «Smart Home» / Д. Г. Котунова, О. М. Павловський // Погляд у майбутнє приладобудування. Київ: КПІ ім. Ігоря Сікорського, 2020. С. 35–38.
  18. Кирисов І. Г., Михайлов Б. К., Лосенко Є. В. Вплив затінення та пошкоджень сонячних батарей на їх параметри. Вчені записки ТНУ імені В. І. Вернадського. Серія: Технічні науки. 2023. Том 34 (73). № 1. С. 180–185. https://doi.org/10.32782/2663-5941/2023.1/27
  19. Felius, L. C. Retrofitting towards energy-efficient homes in European cold climates: a review / L. C. Felius, F. Dessen, B. D. Hrynyszyn // Energy Efficiency. – 2020. – Vol. 13, Issue 1. – pp. 101-125.
  20. Paredes‐Valverde, M. A. IntelliHome: An internet of things‐based system for electrical energy saving in smart home environment / M. A. Paredes‐Valverde, G. Alor‐Hernandez, J. L. Garcia‐Alcaraz, M. D. P. Salas‐Zarate, L. O. Colombo‐Mendoza, J. L. Sanchez‐Cervantes // Computational Intelligence. – 2020. – Vol. 36, Issue 1. – pp. 203-224.
  21. Isnen, M. A-SEM: An adaptive smart energy management testbed for shiftable loads optimisation in the smart home / M. Isnen, S. Kurniawan, E. Garcia-Palacios // Measurement. 2020. Vol. 152, 107285.
  22. Machorro-Cano, I. HEMS-IoT: A Big Data and Machine Learning-Based Smart Home System for Energy Saving / I. MachorroCano, G. Alor-Hernández, M. A. Paredes-Valverde, L. Rodríguez-Mazahua, J. L. Sánchez-Cervantes, J. O. Olmedo-Aguirre // Energies. 2020. Vol. 13, Issue 5. pp. 1097.




DOI: http://dx.doi.org/10.30970/eli.29.8

Refbacks

  • There are currently no refbacks.