Biol. Stud. 2018: 12(3–4); 47–54 • DOI: https://doi.org/10.30970/sbi.1203.580

ATP-INDUCED CHANGES IN [Ca2+]i IN SPERMATOZOA OF INFERTILE MEN WITH OLIGO- AND ASTHENOZOOSPERMIA

R. V. Fafula, O. I. Meskalo, E. I. Lychkovskyy, Z. D. Vorobets

Abstract


Calcium is the major second messenger which plays an important role in sperm physiology. A decreased fertility potential of spermatozoa is closely associated with the disturbances of Ca2-homeostasis. ATP is present in the female reproductive tract and may play an important role in the fertilization process. Since intracellular calcium ([Ca2+]i) is the main determinant of many physiological processes occurring in sperm, we set out to describe the Ca2+-signals in response to extracellular ATP (ATPe) in spermatozoa of fertile (normozoospermia) and infertile men (oligo- and asthenozoospermia). ATPe-induced changes in [Ca2+]i in spermatozoa were studied using 2 mM fluorescent probe Fluo-4. ATPe caused a rapid transient elevation in [Ca2+]i. We found that kinetics and magnitude of the [Ca2+]i changes induced by the ATPe were different in normo- and pathospermic cells. Specifically, the average value of peak amplitudes of [Ca2+]i rise induced by 5 mM ATPe in oligozoospermic samples was not significantly different from the normozoospermic samples. In the asthenozoospermic samples, the ATPe-induced peak amplitude of [Ca2+]i changes was in 1.5 fold lower (P<0.05) compared to that in the normozoospermic samples. ATPe-induced increase in [Ca2+]i in sperm cell has a concentration-dependent manner in both normozoospermic and pathozoospermic  samples. In the oligozoospermic samples, the [Ca2+]i transient response was 2.5 fold (P<0.05) slower than in the normozoospermic samples. Differences in ATPe-induced [Ca2+]i transients between astheno- and normozoospermic samples were also significant (P<0.05) although less pronounced. The obtained results clearly demonstrate ATPe-induced increase in [Ca2+]i transients are disturbed in pathozoospermic samples which may be detrimental to sperm activation and may result in fertilization failure or abnormality. Taken into account the importance reproductive techniques, specifically for in vitro fertilization and intrauterine insemination present study suggest that modu­lation of [Ca2+]i signals and sperm function by the ATPe may be beneficial for artificial reproductive techniques used in reproductive biology and medicine.

Keywords: calcium, spermatozoa, ATP, male infertility, oligozoospermia, asthenozoospermia

 


Full Text:

PDF

References


1. Banks F.C., Calvert R.C., Burnstock G. Changing P2X receptor localization on maturing sperm in the epididymides of mice, hamsters, rats, and humans: a preliminary study. Fertil. Steril, 2010; 93(5): 1415-20.
https://doi.org/10.1016/j.fertnstert.2009.02.061
PMid:19338992

2. Bedu-Addo K., Costello S., Harper C., Machado-Oliveira G., Lefievre L. et al. Mobilisation of stored calcium in the neck region of human sperm - a mechanism for regulation of flagellar activity. Int. J. Dev. Biol, 2008; 52: 615-626.
https://doi.org/10.1387/ijdb.072535kb
PMid:18649275

3. Burnstock G. Purinergic signalling. Br. J. Pharmacol, 2006; 147(1): 172-181.
https://doi.org/10.1038/sj.bjp.0706429
PMid:16402102 PMCid:PMC1760723

4. Clapham D.E. Calcium signalling. Cell, 2007; 131(6): 1047-58.
https://doi.org/10.1016/j.cell.2007.11.028
PMid:18083096

5. Edwards S.E., Buffone M.G., Knee G.R., Rossato M., Bonannie G., Masiero S., Ferasin S., Gerton G.L., Moss S.B., Williams C.J. Effects of extracellular adenosine 5′-triphosphate on human sperm motility. Reprod. Sci, 2007; 14: 655-666.
https://doi.org/10.1177/1933719107306227
PMid:18000227

6. Fabiani R., Ronquist G. Abundance of guanine, guanosine, inosine and adenosine in human seminal plasma. Int. J. Clin. Lab. Res, 1995; 25(1): 47-51.
https://doi.org/10.1007/BF02592577

7. Florman H.M., Jungnickel M.K., Sutton K.A. Regulating the acrosome reaction. Int J Dev Biol, 2008; 52(5-6): 503-10.
https://doi.org/10.1387/ijdb.082696hf
PMid:18649263

8. Foresta C., Rossato M., Chiozzi P., Di Virgilio F. Mechanism of human sperm activation by extracellular ATP. Am. J. Physiol, 1996; 270: 1709-1714.
https://doi.org/10.1152/ajpcell.1996.270.6.C1709
PMid:8764154

9. Kolomiets O.V., Danylovych Yu.V., Danylovych H.V., Kosterin S.O. Ca2+/H+-exchange in myometrium mitochondria. Ukr. Biochem. J, 2014; 86(3): 41-48. (In Ukrainian)
https://doi.org/10.15407/ubj86.03.041

10. Lee L.K., Foo K.Y. Recent insights on the significance of transcriptomic and metabolomic analysis of male factor infertility. Clin Biochem, 2014; 47(10-11): 973-82.
https://doi.org/10.1016/j.clinbiochem.2014.05.053
PMid:24875852

11. Luria A., Rubinstein S., Lax Y., Breitbart H. Extracellular adenosine triphosphate stimulates acrosomal exocytosis in bovine spermatozoa via P2 purinoceptor. Biol Reprod, 2002; 66(2): 429-37.
https://doi.org/10.1095/biolreprod66.2.429
PMid:11804959

12. Meseguer M., Garrido N., Martínez-Conejero J.A., Simón C., Pellicer A., Remohí J. Relationship between standard semen parameters, calcium, cholesterol contents, and mitochondrial activity in ejaculated spermatozoa from fertile and infertile males. J. Assist. Reprod. Genet, 2004; 21(12): 445-51.
https://doi.org/10.1007/s10815-004-8761-7
PMid:15704520 PMCid:PMC3455617

13. Navarro B., Miki K., Clapham D.E. ATP-activated P2X2 current in mouse spermatozoa. Proc. Natl. Acad. Sci. U. S. A., 2011; 108(34): 14342-7.
https://doi.org/10.1073/pnas.1111695108
PMid:21831833 PMCid:PMC3161588

14. Publicover S., Harper C.V., Barratt C. [Ca2+]i signalling in sperm-making the most of what you've got. Na. Cell. Biol, 2007; 9(3): 235-242.
https://doi.org/10.1038/ncb0307-235
PMid:17330112

15. Publicover S.J., Giojalas L.C., Teves M.E., de Oliveira G.S., Garcнa A.A., Barratt C.L., Harper C.V. Ca2+ signalling in the control of motility and guidance in mammalian sperm. Front Biosci, 2008; 13: 5623-5637.
https://doi.org/10.2741/3105
PMid:18508611

16. Rodrнguez-Miranda E., Buffone M.G., Edwards S.E., Ord T.S., Lin K., Sammel M.D., Gerton G.L., Moss S.B., Williams C.J. Extracellular adenosine 5′-triphosphate alters motility and improves the fertilizing capability of mouse sperm. Biol. Reprod, 2008; 79(1): 164-71.
https://doi.org/10.1095/biolreprod.107.065565
PMid:18401012 PMCid:PMC6280785

17. Rossato M., La Sala G.B., Balasini M., Taricco F., Galeazzi C., Ferlin A., Foresta C. Sperm treatment with extracellular ATP increases fertilization rates in in-vitro fertilization for male factor infertility. Hum. Reprod, 1999; 14(3): 694-7.
https://doi.org/10.1093/humrep/14.3.694
PMid:10221697

18. WHO Laboratory Manual for the examination and processing of human semen, in 5th ed. Geneva: World Health Organization, 2010. 271 p.




DOI: http://dx.doi.org/10.30970/sbi.1203.580

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Studia biologica