IODINE IN ABIOTIC AND BIOTIC ENVIRONMENTS
DOI: http://dx.doi.org/10.30970/sbi.1202.567
Abstract
Iodine, a trace element belonging to halogens, is a natural component of the Earth’s environment. However, its distribution in the environmental compartments is uneven and highly variable. Iodine is scarce in soil-forming parent rocks, soils and continental waters, but it is more abundant in the marine environment and organic rich sedimentary rocks. Iodine is ubiquitous in the biosphere, being found in virtually all organisms, both eukaryotes and prokaryotes. In vertebrates, including humans, iodine is used primarily for synthesis of thyroid hormones involved in the regulation of cellular metabolism and a host of vital body functions. Inadequate iodine intake by humans leads to serious health problems due to thyroid dysfunction and insufficient formation of thyroid hormones (endemic goitre, neurological abnormalities, cognitive impairment, physical development disorders, etc.). Many other biota groups living in different habitats can efficiently concentrate this element by absorbing inorganic iodine species from abiotic environments with the formation of various iodine-containing organic substances. Some of these compounds can serve metabolic and signaling functions in producing organisms, while others, such as volatile halocarbons, are involved in the transfer of iodine from the marine and terrestrial environments to the atmosphere. Consequently, terrestrial, soil and aquatic organisms (including microbial populations) capable of accumulating, metabolizing and volatilizing iodine mediate the processes of its biotransformation in the environment and contribute to the global iodine cycle. Marine organisms (algae, invertebrates) are stronger bioconcentrators of iodine in comparison with terrestrial biota. Brown algae of the genus Laminaria are the most potent iodine accumulators among all living systems. This article describes the distribution of iodine in abiotic and biotic environments, and the involvement of biotic processes in the biogeochemical cycle of iodine.
Keywords
Full Text:
PDFReferences
1. Abdel-Moati M.A.R. Iodine speciation in the Nile river estuary. Marine Chemistry, 1999; 65: 211-225. | |
| |
2. Aiuppa A., Baker D.R., Webster J.D. Halogens in volcanic systems. Chemical Geology, 2009; 263: 1-18. | |
| |
3. Alvarez F., Reich M., Perez-Fodich A., Snyder G., Muramatsu Y., Vargas G., Fehn U. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochimica et Cosmochimica Acta, 2015; 161(15): 50-70. | |
| |
4. Amachi S. Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes and Environments, 2008; 23(4): 269-276. | |
| |
5. Amachi S., Mishima Y., Shinoyama H., Muramatsu Y., Fujii T. Active transport and accumulation of iodide by newly isolated marine bacteria. Applied and Environmental Microbiology, 2005; 71: 741-745. | |
| |
6. Angelousi A., Nonni A., Kassi E., Kontzoglou K. Expression of sodium iodide symporter in human breast tissues. Journal of BUON, 2016; 21(1): 53-60. | |
| |
7. Antoniak G.L. The effect of thyroxine and insulin on the hemopoiesis in animals during neonatal development. Tsitologiia, 1999; 41(6): 512-515. (In Russian) | |
| |
8. Antoniak H.L., Babych N.O., Solohub L.I., Snityns'kyĭ V.V. Role of iodothyronine-deiodinase in thyroid hormone mechanisms in animal and human cells. Ukr. Biokhim. Zh, 2002; 74(1): 5-18. (In Ukrainian) | |
| |
9. Antoniak G.L., Ignatenko Iu.V., Babich N.O., Snitinskii V.V. Structure and function of thyroid hormone receptors. Tsitol. Genet, 2000; 34(5): 67-80. (In Ukrainian) | |
| |
10. Antonyak H.L., Babych N.O., Solohub L.I. Structure and functions of iodothyronine deiodinases in human and animal cells. Uspekhi Sovremennoĭ Biologii, 2002; 122(3): 290-299. (In Russian) | |
| |
11. Antonyak H., Pershyn O., Panas N., Lupak O., Hoivanovych N., Savytska O., Zhylishchych Y. Iodine in the diet and human health. In: Ecology and human health (Krynski A., Tebug G.K., Voloshanska S., eds). Czestochowa: Educator, 2018. P. 35-52. | |
| |
12. Antonyak H.L., Vlizlo V.V. Biochemical and geochemical role of iodine. Lviv, 2013. 390 p. (In Ukrainian) | |
| |
13. Ashworth D.J., Shaw G., Butler A.P., Ciciani L. Soil transport and plant uptake of radio-iodine from near-surface groundwater. Journal of Environmental Radioactivity, 2003; 70: 99-114. | |
| |
14. Babich N.O., Antoniak G.L., Tymochko M.F. Effect of thyroxine on the activity of some enzymes of energy metabolism in bone marrow myeloid cells and blood neutrophils from piglets. Vopr. Med. Khim, 2000; 46(2): 162-167. (In Russian) | |
| |
15. Babych N., Antonyak H., Sklyarov A. Developmental switches in the functioning of iodothyronine-5¢-deiodinase in haemopoietic tissue. FASEB J, 1999; 13(5): 784.4. | |
| |
16. Babych N., Antonyak H., Sklyarov A.Ya. The influence of thyroxine on intensity of energy metabolism in bone marrow myeloid cells and neutrophilic polymorphonuclear leukocytes of neonatal pig. Endocrine Regulations, 2000; 34(2): 73-81. | |
| |
17. Babych N.O., Antoniak H.L., Tymochko M.F., Snityns'kyĭ V.V. The effect of thyroxine on the enzymatic activity of the energy metabolism and antioxidant system in the neutrophilic granulocytes of piglets. Fiziol Zh, 2000; 46(3): 84-91. (In Ukrainian). | |
| |
18. Bell N., Hsu L., Jacob D.J., Blake D.R., Butler J.H., King D.B., Lobert J.M., Maier-Reimer E. Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models. Journal of Geophysical Research, 2002; 107(D17): 4340. | |
| |
19. Bianco A.C., Salvatore D., Gereben B., Berry M.J., Larsen P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine Reviews, 2002; 23(1): 38-89. | |
| |
20. Borst Pauwels G.W.F.H. Iodine as a micronutrient for plants. Plant and Soil, 1961; 14: 665-671. | |
| |
21. Bouga M., Combet E. Emergence of seaweed and seaweed-containing foods in the UK: focus on labeling, iodine content, toxicity and nutrition. Foods, 2015; 4: 240-253. | |
| |
22. Burkholder J.B., Curtius J., Ravishankara A.R., Lovejoy E.R. Laboratory studies of the homogeneous nucleation of iodine oxides. Atmospheric Chemistry and Physics, 2004; 4: 19-34. | |
| |
23. Carvalho D.P., Dupuy C. Thyroid hormone biosynthesis and release. Molecular and Cellular Endocrinology, 2017; 458: 6-15. | |
| |
24. Chance R., Baker A.R., Carpenter L., Jickells T.D. The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts, 2014; 16: 1841-1859. | |
| |
25. Chance R., Baker A.R., Küpper F.C., Hughes C., Kloareg B., Malin B. Release and transformations of inorganic iodine by marine macroalgae. Estuarine, Coastal and Shelf Science, 2009; 82(3): 406-414. | |
| |
26. De Felice M., Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocrine Reviews, 2004; 25(5): 722-746. | |
| |
27. DeGroot L.J., Larsen P., Hennemann G. Thyroid hormone transport, cellular uptake, metabolism, and molecular action. In: The Thyroid and Its Diseases, 6th ed. Churchill Livingstone, N.Y., 1996: 61-111. | |
| |
28. De la Vieja A., Santisteban P. Role of iodide metabolism in physiology and cancer. Endocrine-Related Cancer, 2018; 25(4): R225-R245. | |
| |
29. Dembitsky V. Biogenic iodine and iodine-containing metabolites. Natural Product Communications, 2006; 1(2): 139-175. | |
| |
30. Eales J.G. Iodine metabolism and thyroid-related functions in organisms lacking thyroid follicles: are thyroid hormones also vitamins? Proceedings of the Society for Experimental Biology and Medicine, 1997; 214(4): 302-317. | |
| |
31. European Food Safety Authority (EFSA). Opinion of the Scientific Panel on additives and products or substances used in animal feed (FEEDAP) on the use of iodine in feedingstuffs. The EFSA Journal, 2005; 168: 1-42. | |
| |
32. Fuge R., Johnson C.C. Iodine and human health, the role of environmental geochemistry and diet, a review. Applied Geochemistry, 2015; 63: 282-302. | |
| |
33. Gilfedder B.S., Petri M., Biester H. Iodine speciation and cycling in fresh waters: A case study from a humic rich headwater lake (Mummelsee). Journal of Limnology, 2009; 68(2): 396-408. | |
| |
34. Gonzali S., Kiferle C., Perata P. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology, 2017, 44: 16-26. | |
| |
35. Hetzel B.S., Maberly G.F. Iodine. In: Trace Elements in Human and Animal Nutrition, 5th edn. (Mertz W., ed). N.Y.: Acad. Press, 1986; 2: 139-208. | |
| |
36. Hou X., Hansen V., Aldahan A., Possnert G., Lind O.C., Lujaniene G. A review on speciation of iodine-129 in the environmental and biological samples. Analytica Chimica Acta, 2009; 632(2): 181-196. | |
| |
37. Hwang B.S., Lee K., Yang C., Jeong E.J., Rho J.-R. Characterization and anti-inflammatory effects of iodinated acetylenic acids isolated from the marine sponges Suberites mammilaris and Suberites japonicas. Journal of Natural Products, 2013; 76(12): 2355-2359. | |
| |
38. Isupov V., Vladimirov A., Sodov A., Kolpakova M., Shvartsev S., Volkova N. Hydromineral resources of saline lakes of Mongolia and Russian Altai. Advanced Materials Research, 2015; 1085: 166-170. | |
| |
39. Iwamoto K., Shiraiwa Y. Characterization of intracellular iodine accumulation by iodine-tolerant microalgae. Procedia Environmental Sciences, 2012; 15: 34-42. | |
| |
40. Kendrick M.A. Halogens. In: Encyclopedia of Geochemistry (White W.M., ed). Springer Internat. Publ. AG, 2016: 1-5. | |
| |
41. Keppler F., Borchers R., Elsner P., Fahimi I, Pracht J, Schöler HF. Formation of volatile iodinated alkanes in soil: results from laboratory studies. Chemosphere, 2003; 52(2): 477-483. | |
| |
42. Kesler S.E., Simon A.C. Mineral Resources, Economics and the Environment. Cambridge University Press, 2015. 446 p. | |
| |
43. Kodama S., Takahashi Y., Okumura K., Uruga T. Speciation of iodine in solid environmental samples by iodine K-edge XANES: application to soils and ferromanganese oxides. Science of The Total Environment, 2006; 363(1-3): 275-284. | |
| |
44. Kopp P., Cooper D.S. Thyroid hormone synthesis: thyroid iodine metabolism. In: Werner and Ingbar's the thyroid: a fundamental and clinical text, 10th edn. (Braverman L.E., Cooper D.S., eds). Philadelphia: Lippincott, Williams & Wilkins, 2013. P. 48-74. | |
| |
45. Küpper F.C., Carpenter L.J., McFiggans G.B., Palmer C.J., Waite T.J., Boneberg E.-M., Woitsch S., Weiller M., Abela R., Grolimund D., Potin P., Butler A., Luther III G.W., Kroneck P.M.H., Meyer-Klaucke W., Feiters M.C. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proceedings of the National Academy of Sciences USA, 2008; 105: 6954-6958. | |
| |
46. Küpper F.C., Kroneck P.M.H. Iodine bioinorganic chemistry: physiology, structures, and mechanisms. In: Iodine Chemistry and Applications (Kaiho T., ed). John Wiley & Sons, Inc., 2015. P. 537-589. | |
| |
47. Küpper F.C., Schweigert N., Argall E., Legendre JM, Vilter H, Kloareg B. Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta, 1998; 207(2): 163-171. | |
| |
48. La Barre S., Potin P., Leblanc C., Delage L. The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Marine Drugs, 2010; 8(4): 988-1010. | |
| |
49. Larsen P.R., Zavacki A.M. Role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. European Thyroid Journal, 2013; 1(4): 232-242. | |
| |
50. Leblanc C., Colin C., Cosse A., Delage L., La Barre S., Morin P., Fiévet B., Voiseux C., Ambroise Y., Verhaeghe E., Amouroux D., Donard O., Tessier E., Potin P. Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochemie, 2006; 88: 1773-1785. | |
| |
51. Leyva R., Sánchez-Rodríguez E., Ríos J.J., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M., Blasco B. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011; 181(2): 195-202. | |
| |
52. Li H.P., Brinkmeyer R., Jones W.L., Zhang S., Xu C., Schwehr K.A., Santschi P.H., Kaplan D.I., Yeager C.M. Iodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129I-contaminated aquifer at the Savannah River Site, South Carolina. Applied and Environmental Microbiology, 2011; 77: 2153-2160. | |
| |
53. Lupak O.M., Kovalchuk H.Ya., Antonyak H.L. Potentiometric determination of the antioxidant activity of plant extracts of Calendula officinalis L. under the action of growth bio-stimulants. ScienceRise: Biological Science, 2017; 6(9): 10-13. (In Ukrainian) | |
| |
54. Lupak O., Kovalchuk H., Antonyak H. Comparative analysis of integrated antioxidant activity of inflorescences of Calendula officinalis L. plants grown in the conditions of Precarpathian area and the effect of growth biostimulants. Biological Resources and Nature Management = Bioresursy i pryrodokorystuvannya, 2018; 10(1-2): 58-63. (In Ukrainian) | |
| |
55. Marinova S., Yurukova L., Frontasyeva M.V., Steinnes E., Strelkova L. P., Marinov A., Karadzhinova A. G. Air pollution studies in Bulgaria using the moss biomonitoring technique. Ecological Chemistry and Engineering S, 2010; S17(1): 37-52. | |
| |
56. McLanahan E.D., Andersen M., Fisher J. A biologically based dose-response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency. Toxicological Sciences, 2008; 102(2): 241-253. | |
| |
57. McMenamin S.K., Parichy D.M. Metamorphosis in teleosts. Current Topics in Developmental Biology, 2013; 103: 127-165. | |
| |
58. Moran J.E. Sources of iodine and iodine 129 in rivers. Water Resources Research, 2002; 38(8): 1149. | |
| |
59. Nath T., Raha P., Rakshit A. Sorption and desorption behaviour of iodine in alluvial soils of Varanasi, India. Agricultura, 2010; 7: 9-14. | |
| |
60. Nicola J.P., Carrasco N., Masini-Repiso A.M. Dietary I(-) absorption: expression and regulation of the Na(+)/I(-) symporter in the intestine. Vitamins & Hormones, 2015; 98: 1-31. | |
| |
61. O'Neill H.St.C., Palme H. Composition of the silicate Earth: implications for accretion and core formation. In: The Earth's Mantle: Structure, Composition and Evolution - the Ringwood Volume (Jackson I., ed). Cambridge Univ. Press, 1998. P. 3-126. | |
| |
62. Pearce E.N. National trends in iodine nutrition: Is everyone getting enough? Thyroid, 2007; 17: 823-827. | |
| |
63. Portulano C., Paroder-Belenitsky M., Carrasco N. The Na+/I− symporter (NIS): Mechanism and medical impact. Endocrine Reviews, 2014; 35: 106-149. | |
| |
64. Préau L., Fini J.B., Morvan-Dubois G., Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochimica et Biophysica Acta, 2015; 1849(2): 112-121. | |
| |
65. Prouty N.G., Roark E.B., Mohon L.M., Chang C.-C. Uptake and distribution of organo-iodine in deep-sea corals. Journal of Environmental Radioactivity, 2018; 187: 122-132. | |
| |
66. Ravera S., Reyna-Neyra A., Ferrandino G., Amzel L. M., Carrasco N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annual Review of Physiology, 2017; 79(1): 261-289. | |
| |
67. Redeker K.R., Treseder K., Allen M. Ectomycorrhizal fungi: a new source of atmospheric methyl halides? Global Change Biology, 2004; 10(6): 1009-1016. | |
| |
68. Risher J.F., Keith L.S. Iodine and Inorganic Iodides: Human Health Aspects. Geneva: WHO Press, 2009. 61 p. | |
| |
69. Robertson D.E., Cataldo D.A., Napier B.A., Krupka K.M., Sasser L.B. Literature review and assessment of plant and animal transfer factors used in performance assessment modeling. Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001. 2003. 182 p. | |
| |
70. Saini H.S., Attieh J.M., Hanson A.D. Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Plant, Cell & Environment, 1995; 18(9): 1027-1033. | |
| |
71. Saiz-Lopez A., Fernandez R. P., Ordóñez C., Kinnison D.E., Gómez Martín J.C., Lamarque J.-F., Tilmes S. Iodine chemistry in the troposphere and its effect on ozone. Atmospheric Chemistry and Physics, 2014; 14: 13119-13143. | |
| |
72. Šeda M., Konečný R., Fiala K., Hladký J., Švehla J., Trávníček J. Iodine content in running surface waters in areas with more intensive landscape management in the Czech Republic. Journal of Elementology, 2017; 22(1): 295-304. | |
| |
73. Seki M., Oikawa J., Taguchi T. et al. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environmental Science & Technology, 2013; 47(1): 390-397. | |
| |
74. Shen S., Liu D., Wei C., Proksch P., Lin W. Purpuroines A-J, halogenated alkaloids from the sponge Iotrochota purpurea with antibiotic activity and regulation of tyrosine kinases. Bioorganic & Medicinal Chemistry, 2012; 20: 6924-6928. | |
| |
75. Shetaya W.H., Young S.D., Watts M.J., Ander E.L., Bailey E.H. Iodine dynamics in soils. Geochimica et Cosmochimica Acta, 2012; 77: 457-473. | |
| |
76. Snitynsky V., Antonyak H. The hormonal regulation of blood respiratory function in cattle during the neonatal period. Annales De Zootechnie, 1995; 44 (Suppl. 1): 281. | |
| |
77. Snityns'kyĭ V.V., Antoniak H.L. Biochemical role of selenium. Ukr. Biokhim. Zh, 1994; 66(5): 3-16. | |
| |
78. St. Germain D.L., Galton V.A., Hernandez A. Minireview: Defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology, 2009; 150(3): 1097-1107. | |
| |
79. Su Y.D., Su J.H., Hwang T.L., Wen Z.H., Sheu J.H., Wu J.C., Sung P.J. Briarane diterpenoids isolated from Octocorals between 2014 and 2016. Marine Drugs, 2017; 15: 44. | |
| |
80. Sukhomlinov B.F., Antoniak G.L., Trikulenko A.V. Effect of thyroxine on the hemoglobin affinity to oxygen and 2,3-diphosphoglycerate level in rat erythrocytes. Ukrainskii Biokhimicheskii Zhurnal, 1986; 58(2): 84-86. | |
| |
81. Sun J.-F., Huang H., Chai X.-Y., Yang X.-W., Meng L., Huang C.-G., Zhou X.-F., Yang B., Hu J., Chen X.-Q. Dichotellides A-E, five new iodine-containing briarane type diterpenoids from Dichotella gemmacea. Tetrahedron, 2011; 67(6): 1245-1250. | |
| |
82. Tagami K., Uchida S. Concentrations of chlorine, bromine and iodine in Japanese rivers. Chemosphere, 2006; 65(11): 2358-2365. | |
| |
83. Targovnik H.M., Citterio C.E., Rivolta C.M. Iodide handling disorders (NIS, TPO, TG, IYD). Best Practice & Research Clinical Endocrinology & Metabolism, 2017; 31(2): 195-212. | |
| |
84. Thompson C.K., Cline H.T. Thyroid hormone acts locally to increase neurogenesis, neuronal differentiation, and dendritic arbor elaboration in the tadpole visual system. Journal of Neuroscience, 2016; 36(40): 10356-10375. | |
| |
85. Thorenz U.R., Carpenter L.J., Huang R.-J. et al. Emission of iodine containing volatiles by selected microalgae species. Atmospheric Chemistry and Physics, 2014; 14: 13327-13335. | |
| |
86. Turoski V. Chlorine and Chlorine Compounds in the Paper Industry. CRC Press, 1997. 400 p. | |
| |
87. Venturi S., Venturi M. Iodide, thyroid and stomach carcinogenesis: Evolutionary story of a primitive antioxidant? European Journal of Endocrinology, 1999; 140: 371-372. | |
| |
88. Vogt R. Iodine compounds in the atmosphere. In: Reactive Halogen Compounds in the Atmosphere (Fabian P., Singh O.N., eds). Berlin, Heidelberg: Springer, 1999. 113-127 p. | |
| |
89. Watts M.J., O'Reilly J., Marcelli A., Coleman A., Ander E.L., Ward N.I. A snapshot of environmental iodine and selenium in La Pampa and San Juan provinces of Argentina. Journal of Geochemical Exploration, 2010; 107(2): 87-93. | |
| |
90. Weng H.X., Yan A.L., Hong C.L., Qin YC, Pan L., Xie L.L. Biogeochemical transfer and dynamics of iodine in a soil-plant system. Environmental Geochemistry and Health, 2009; 31(3): 401-411. | |
| |
91. Whitehead D.C. The distribution and transformations of iodine in the environment. Environment International, 1984; 10: 321-339. | |
| |
92. Yen P.M., Brent G.A. Genomic and nongenomic actions of thyroid hormones. In: Werner and Ingbar's the thyroid: a fundamental and clinical text, 10th edn. (Braverman L.E., Cooper D.S., eds). Philadelphia: Lippincott, Williams & Wilkins, 2013: 127-137. | |
| |
93. Zimmermann M.B. The importance of adequate iodine during pregnancy and infancy. World Review of Nutrition and Dietetics, 2016; 115: 118-124. | |
| |
94. Zimmermann M.B., Boelaert K. Iodine deficiency and thyroid disorders. The Lancet Diabetes & Endocrinology, 2015; 3(4): 286-295. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 H. L. Antonyak, N. E. Panas, O. I. Pershyn, A. I. Polishchuk, N. K. Hoyvanovych
This work is licensed under a Creative Commons Attribution 4.0 International License.