IODINE IN ABIOTIC AND BIOTIC ENVIRONMENTS

H. L. Antonyak, N. E. Panas, O. I. Pershyn, A. I. Polishchuk, N. K. Hoyvanovych


DOI: http://dx.doi.org/10.30970/sbi.1202.567

Abstract


Iodine, a trace element belonging to halogens, is a natural component of the Earth’s environment. However, its distribution in the environmental compartments is uneven and highly variable. Iodine is scarce in soil-forming parent rocks, soils and continental waters, but it is more abundant in the marine environment and organic rich sedimentary rocks. Iodine is ubiquitous in the biosphere, being found in virtually all organisms, both eukaryotes and prokaryotes. In vertebrates, including humans, iodine is used primarily for synthesis of thyroid hormones involved in the regulation of cellular metabolism and a host of vital body functions. Inadequate iodine intake by humans leads to serious health problems due to thyroid dysfunction and insufficient formation of thyroid hormones (endemic goitre, neurological abnormalities, cognitive impairment, physical development disorders, etc.). Many other biota groups living in different habitats can efficiently concentrate this element by absorbing inorganic iodine species from abiotic environments with the formation of various iodine-containing organic substances. Some of these compo­unds can serve metabolic and signaling functions in producing organisms, while others, such as volatile halocarbons, are involved in the transfer of iodine from the marine and terrestrial environments to the atmosphere. Consequently, terrestrial, soil and aquatic organisms (including microbial populations) capable of accumulating, metabolizing and volatilizing iodine mediate the processes of its biotransformation in the environment and contribute to the global iodine cycle. Marine organisms (algae, invertebrates) are stron­ger bioconcentrators of iodine in comparison with terrestrial biota. Brown algae of the genus Laminaria are the most potent iodine accumulators among all living systems. This article describes the distribution of iodine in abiotic and biotic environments, and the involvement of biotic processes in the biogeochemical cycle of iodine.


Keywords


iodine, environment, ecosystems, biota, marine algae, thyroid hormones

Full Text:

PDF

References


1. Abdel-Moati M.A.R. Iodine speciation in the Nile river estuary. Marine Chemistry, 1999; 65: 211-225.
https://doi.org/10.1016/S0304-4203(99)00003-1

2. Aiuppa A., Baker D.R., Webster J.D. Halogens in volcanic systems. Chemical Geology, 2009; 263: 1-18.
https://doi.org/10.1016/j.chemgeo.2008.10.005

3. Alvarez F., Reich M., Perez-Fodich A., Snyder G., Muramatsu Y., Vargas G., Fehn U. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochimica et Cosmochimica Acta, 2015; 161(15): 50-70.
https://doi.org/10.1016/j.gca.2015.03.032

4. Amachi S. Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes and Environments, 2008; 23(4): 269-276.
https://doi.org/10.1264/jsme2.ME08548
PMid:21558718

5. Amachi S., Mishima Y., Shinoyama H., Muramatsu Y., Fujii T. Active transport and accumulation of iodide by newly isolated marine bacteria. Applied and Environmental Microbiology, 2005; 71: 741-745.
https://doi.org/10.1128/AEM.71.2.741-745.2005
PMid:15691925 PMCid:PMC546781

6. Angelousi A., Nonni A., Kassi E., Kontzoglou K. Expression of sodium iodide symporter in human breast tissues. Journal of BUON, 2016; 21(1): 53-60.

7. Antoniak G.L. The effect of thyroxine and insulin on the hemopoiesis in animals during neonatal development. Tsitologiia, 1999; 41(6): 512-515. (In Russian)

8. Antoniak H.L., Babych N.O., Solohub L.I., Snityns'kyĭ V.V. Role of iodothyronine-deiodinase in thyroid hormone mechanisms in animal and human cells. Ukr. Biokhim. Zh, 2002; 74(1): 5-18. (In Ukrainian)

9. Antoniak G.L., Ignatenko Iu.V., Babich N.O., Snitinskii V.V. Structure and function of thyroid hormone receptors. Tsitol. Genet, 2000; 34(5): 67-80. (In Ukrainian)

10. Antonyak H.L., Babych N.O., Solohub L.I. Structure and functions of iodothyronine deiodinases in human and animal cells. Uspekhi Sovremennoĭ Biologii, 2002; 122(3): 290-299. (In Russian)

11. Antonyak H., Pershyn O., Panas N., Lupak O., Hoivanovych N., Savytska O., Zhylishchych Y. Iodine in the diet and human health. In: Ecology and human health (Krynski A., Tebug G.K., Voloshanska S., eds). Czestochowa: Educator, 2018. P. 35-52.

12. Antonyak H.L., Vlizlo V.V. Biochemical and geochemical role of iodine. Lviv, 2013. 390 p. (In Ukrainian)

13. Ashworth D.J., Shaw G., Butler A.P., Ciciani L. Soil transport and plant uptake of radio-iodine from near-surface groundwater. Journal of Environmental Radioactivity, 2003; 70: 99-114.
https://doi.org/10.1016/S0265-931X(03)00121-8

14. Babich N.O., Antoniak G.L., Tymochko M.F. Effect of thyroxine on the activity of some enzymes of energy metabolism in bone marrow myeloid cells and blood neutrophils from piglets. Vopr. Med. Khim, 2000; 46(2): 162-167. (In Russian)

15. Babych N., Antonyak H., Sklyarov A. Developmental switches in the functioning of iodothyronine-5¢-deiodinase in haemopoietic tissue. FASEB J, 1999; 13(5): 784.4.

16. Babych N., Antonyak H., Sklyarov A.Ya. The influence of thyroxine on intensity of energy metabolism in bone marrow myeloid cells and neutrophilic polymorphonuclear leukocytes of neonatal pig. Endocrine Regulations, 2000; 34(2): 73-81.

17. Babych N.O., Antoniak H.L., Tymochko M.F., Snityns'kyĭ V.V. The effect of thyroxine on the enzymatic activity of the energy metabolism and antioxidant system in the neutrophilic granulocytes of piglets. Fiziol Zh, 2000; 46(3): 84-91. (In Ukrainian).

18. Bell N., Hsu L., Jacob D.J., Blake D.R., Butler J.H., King D.B., Lobert J.M., Maier-Reimer E. Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models. Journal of Geophysical Research, 2002; 107(D17): 4340.
https://doi.org/10.1029/2001JD001151

19. Bianco A.C., Salvatore D., Gereben B., Berry M.J., Larsen P.R. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine Reviews, 2002; 23(1): 38-89.
https://doi.org/10.1210/edrv.23.1.0455
PMid:11844744

20. Borst Pauwels G.W.F.H. Iodine as a micronutrient for plants. Plant and Soil, 1961; 14: 665-671.
https://doi.org/10.1007/BF01666295

21. Bouga M., Combet E. Emergence of seaweed and seaweed-containing foods in the UK: focus on labeling, iodine content, toxicity and nutrition. Foods, 2015; 4: 240-253.
https://doi.org/10.3390/foods4020240
PMid:28231201 PMCid:PMC5302319

22. Burkholder J.B., Curtius J., Ravishankara A.R., Lovejoy E.R. Laboratory studies of the homogeneous nucleation of iodine oxides. Atmospheric Chemistry and Physics, 2004; 4: 19-34.
https://doi.org/10.5194/acp-4-19-2004

23. Carvalho D.P., Dupuy C. Thyroid hormone biosynthesis and release. Molecular and Cellular Endocrinology, 2017; 458: 6-15.
https://doi.org/10.1016/j.mce.2017.01.038
PMid:28153798

24. Chance R., Baker A.R., Carpenter L., Jickells T.D. The distribution of iodide at the sea surface. Environmental Science: Processes & Impacts, 2014; 16: 1841-1859.
https://doi.org/10.1039/C4EM00139G
PMid:24964735

25. Chance R., Baker A.R., Küpper F.C., Hughes C., Kloareg B., Malin B. Release and transformations of inorganic iodine by marine macroalgae. Estuarine, Coastal and Shelf Science, 2009; 82(3): 406-414.
https://doi.org/10.1016/j.ecss.2009.02.004

26. De Felice M., Di Lauro R. Thyroid development and its disorders: genetics and molecular mechanisms. Endocrine Reviews, 2004; 25(5): 722-746.
https://doi.org/10.1210/er.2003-0028
PMid:15466939

27. DeGroot L.J., Larsen P., Hennemann G. Thyroid hormone transport, cellular uptake, metabolism, and molecular action. In: The Thyroid and Its Diseases, 6th ed. Churchill Livingstone, N.Y., 1996: 61-111.

28. De la Vieja A., Santisteban P. Role of iodide metabolism in physiology and cancer. Endocrine-Related Cancer, 2018; 25(4): R225-R245.
https://doi.org/10.1530/ERC-17-0515
PMid:29437784

29. Dembitsky V. Biogenic iodine and iodine-containing metabolites. Natural Product Communications, 2006; 1(2): 139-175.
https://doi.org/10.1177/1934578X0600100210

30. Eales J.G. Iodine metabolism and thyroid-related functions in organisms lacking thyroid follicles: are thyroid hormones also vitamins? Proceedings of the Society for Experimental Biology and Medicine, 1997; 214(4): 302-317.
https://doi.org/10.3181/00379727-214-44098
PMid:9111521

31. European Food Safety Authority (EFSA). Opinion of the Scientific Panel on additives and products or substances used in animal feed (FEEDAP) on the use of iodine in feedingstuffs. The EFSA Journal, 2005; 168: 1-42.
https://doi.org/10.2903/j.efsa.2005.168

32. Fuge R., Johnson C.C. Iodine and human health, the role of environmental geochemistry and diet, a review. Applied Geochemistry, 2015; 63: 282-302.
https://doi.org/10.1016/j.apgeochem.2015.09.013

33. Gilfedder B.S., Petri M., Biester H. Iodine speciation and cycling in fresh waters: A case study from a humic rich headwater lake (Mummelsee). Journal of Limnology, 2009; 68(2): 396-408.
https://doi.org/10.4081/jlimnol.2009.396

34. Gonzali S., Kiferle C., Perata P. Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology, 2017, 44: 16-26.
https://doi.org/10.1016/j.copbio.2016.10.004
PMid:27835794

35. Hetzel B.S., Maberly G.F. Iodine. In: Trace Elements in Human and Animal Nutrition, 5th edn. (Mertz W., ed). N.Y.: Acad. Press, 1986; 2: 139-208.
https://doi.org/10.1016/B978-0-08-092469-4.50006-6

36. Hou X., Hansen V., Aldahan A., Possnert G., Lind O.C., Lujaniene G. A review on speciation of iodine-129 in the environmental and biological samples. Analytica Chimica Acta, 2009; 632(2): 181-196.
https://doi.org/10.1016/j.aca.2008.11.013
PMid:19110092

37. Hwang B.S., Lee K., Yang C., Jeong E.J., Rho J.-R. Characterization and anti-inflammatory effects of iodinated acetylenic acids isolated from the marine sponges Suberites mammilaris and Suberites japonicas. Journal of Natural Products, 2013; 76(12): 2355-2359.
https://doi.org/10.1021/np400793r
PMid:24256436

38. Isupov V., Vladimirov A., Sodov A., Kolpakova M., Shvartsev S., Volkova N. Hydromineral resources of saline lakes of Mongolia and Russian Altai. Advanced Materials Research, 2015; 1085: 166-170.
https://doi.org/10.4028/www.scientific.net/AMR.1085.166

39. Iwamoto K., Shiraiwa Y. Characterization of intracellular iodine accumulation by iodine-tolerant microalgae. Procedia Environmental Sciences, 2012; 15: 34-42.
https://doi.org/10.1016/j.proenv.2012.05.007

40. Kendrick M.A. Halogens. In: Encyclopedia of Geochemistry (White W.M., ed). Springer Internat. Publ. AG, 2016: 1-5.

41. Keppler F., Borchers R., Elsner P., Fahimi I, Pracht J, Schöler HF. Formation of volatile iodinated alkanes in soil: results from laboratory studies. Chemosphere, 2003; 52(2): 477-483.
https://doi.org/10.1016/S0045-6535(03)00198-X

42. Kesler S.E., Simon A.C. Mineral Resources, Economics and the Environment. Cambridge University Press, 2015. 446 p.
https://doi.org/10.1017/CBO9781139871426

43. Kodama S., Takahashi Y., Okumura K., Uruga T. Speciation of iodine in solid environmental samples by iodine K-edge XANES: application to soils and ferromanganese oxides. Science of The Total Environment, 2006; 363(1-3): 275-284.
https://doi.org/10.1016/j.scitotenv.2006.01.004
PMid:16487573

44. Kopp P., Cooper D.S. Thyroid hormone synthesis: thyroid iodine metabolism. In: Werner and Ingbar's the thyroid: a fundamental and clinical text, 10th edn. (Braverman L.E., Cooper D.S., eds). Philadelphia: Lippincott, Williams & Wilkins, 2013. P. 48-74.

45. Küpper F.C., Carpenter L.J., McFiggans G.B., Palmer C.J., Waite T.J., Boneberg E.-M., Woitsch S., Weiller M., Abela R., Grolimund D., Potin P., Butler A., Luther III G.W., Kroneck P.M.H., Meyer-Klaucke W., Feiters M.C. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proceedings of the National Academy of Sciences USA, 2008; 105: 6954-6958.
https://doi.org/10.1073/pnas.0709959105
PMid:18458346 PMCid:PMC2383960

46. Küpper F.C., Kroneck P.M.H. Iodine bioinorganic chemistry: physiology, structures, and mechanisms. In: Iodine Chemistry and Applications (Kaiho T., ed). John Wiley & Sons, Inc., 2015. P. 537-589.
https://doi.org/10.1002/9781118909911.ch32

47. Küpper F.C., Schweigert N., Argall E., Legendre JM, Vilter H, Kloareg B. Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta, 1998; 207(2): 163-171.
https://doi.org/10.1007/s004250050469

48. La Barre S., Potin P., Leblanc C., Delage L. The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance. Marine Drugs, 2010; 8(4): 988-1010.
https://doi.org/10.3390/md8040988
PMid:20479964 PMCid:PMC2866472

49. Larsen P.R., Zavacki A.M. Role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. European Thyroid Journal, 2013; 1(4): 232-242.
https://doi.org/10.1159/000343922
PMid:23750337 PMCid:PMC3673746

50. Leblanc C., Colin C., Cosse A., Delage L., La Barre S., Morin P., Fiévet B., Voiseux C., Ambroise Y., Verhaeghe E., Amouroux D., Donard O., Tessier E., Potin P. Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochemie, 2006; 88: 1773-1785.
https://doi.org/10.1016/j.biochi.2006.09.001
PMid:17007992

51. Leyva R., Sánchez-Rodríguez E., Ríos J.J., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M., Blasco B. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011; 181(2): 195-202.
https://doi.org/10.1016/j.plantsci.2011.05.007
PMid:21683885

52. Li H.P., Brinkmeyer R., Jones W.L., Zhang S., Xu C., Schwehr K.A., Santschi P.H., Kaplan D.I., Yeager C.M. Iodide accumulation by aerobic bacteria isolated from subsurface sediments of a 129I-contaminated aquifer at the Savannah River Site, South Carolina. Applied and Environmental Microbiology, 2011; 77: 2153-2160.
https://doi.org/10.1128/AEM.02164-10
PMid:21278282 PMCid:PMC3067311

53. Lupak O.M., Kovalchuk H.Ya., Antonyak H.L. Potentiometric determination of the antioxidant activity of plant extracts of Calendula officinalis L. under the action of growth bio-stimulants. ScienceRise: Biological Science, 2017; 6(9): 10-13. (In Ukrainian)
https://doi.org/10.15587/2519-8025.2017.119086

54. Lupak O., Kovalchuk H., Antonyak H. Comparative analysis of integrated antioxidant activity of inflorescences of Calendula officinalis L. plants grown in the conditions of Precarpathian area and the effect of growth biostimulants. Biological Resources and Nature Management = Bioresursy i pryrodokorystuvannya, 2018; 10(1-2): 58-63. (In Ukrainian)

55. Marinova S., Yurukova L., Frontasyeva M.V., Steinnes E., Strelkova L. P., Marinov A., Karadzhinova A. G. Air pollution studies in Bulgaria using the moss biomonitoring technique. Ecological Chemistry and Engineering S, 2010; S17(1): 37-52.

56. McLanahan E.D., Andersen M., Fisher J. A biologically based dose-response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency. Toxicological Sciences, 2008; 102(2): 241-253.
https://doi.org/10.1093/toxsci/kfm312
PMid:18178547

57. McMenamin S.K., Parichy D.M. Metamorphosis in teleosts. Current Topics in Developmental Biology, 2013; 103: 127-165.
https://doi.org/10.1016/B978-0-12-385979-2.00005-8
PMid:23347518 PMCid:PMC5606158

58. Moran J.E. Sources of iodine and iodine 129 in rivers. Water Resources Research, 2002; 38(8): 1149.
https://doi.org/10.1029/2001WR000622

59. Nath T., Raha P., Rakshit A. Sorption and desorption behaviour of iodine in alluvial soils of Varanasi, India. Agricultura, 2010; 7: 9-14.

60. Nicola J.P., Carrasco N., Masini-Repiso A.M. Dietary I(-) absorption: expression and regulation of the Na(+)/I(-) symporter in the intestine. Vitamins & Hormones, 2015; 98: 1-31.
https://doi.org/10.1016/bs.vh.2014.12.002
PMid:25817864

61. O'Neill H.St.C., Palme H. Composition of the silicate Earth: implications for accretion and core formation. In: The Earth's Mantle: Structure, Composition and Evolution - the Ringwood Volume (Jackson I., ed). Cambridge Univ. Press, 1998. P. 3-126.

62. Pearce E.N. National trends in iodine nutrition: Is everyone getting enough? Thyroid, 2007; 17: 823-827.
https://doi.org/10.1089/thy.2007.0102
PMid:17956156

63. Portulano C., Paroder-Belenitsky M., Carrasco N. The Na+/I− symporter (NIS): Mechanism and medical impact. Endocrine Reviews, 2014; 35: 106-149.
https://doi.org/10.1210/er.2012-1036
PMid:24311738 PMCid:PMC3895864

64. Préau L., Fini J.B., Morvan-Dubois G., Demeneix B. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochimica et Biophysica Acta, 2015; 1849(2): 112-121.
https://doi.org/10.1016/j.bbagrm.2014.06.015
PMid:24980696

65. Prouty N.G., Roark E.B., Mohon L.M., Chang C.-C. Uptake and distribution of organo-iodine in deep-sea corals. Journal of Environmental Radioactivity, 2018; 187: 122-132.
https://doi.org/10.1016/j.jenvrad.2018.01.003
PMid:29452767

66. Ravera S., Reyna-Neyra A., Ferrandino G., Amzel L. M., Carrasco N. The sodium/iodide symporter (NIS): molecular physiology and preclinical and clinical applications. Annual Review of Physiology, 2017; 79(1): 261-289.
https://doi.org/10.1146/annurev-physiol-022516-034125
PMid:28192058 PMCid:PMC5739519

67. Redeker K.R., Treseder K., Allen M. Ectomycorrhizal fungi: a new source of atmospheric methyl halides? Global Change Biology, 2004; 10(6): 1009-1016.
https://doi.org/10.1111/j.1529-8817.2003.00782.x

68. Risher J.F., Keith L.S. Iodine and Inorganic Iodides: Human Health Aspects. Geneva: WHO Press, 2009. 61 p.

69. Robertson D.E., Cataldo D.A., Napier B.A., Krupka K.M., Sasser L.B. Literature review and assessment of plant and animal transfer factors used in performance assessment modeling. Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001. 2003. 182 p.
https://doi.org/10.2172/1024566

70. Saini H.S., Attieh J.M., Hanson A.D. Biosynthesis of halomethanes and methanethiol by higher plants via a novel methyltransferase reaction. Plant, Cell & Environment, 1995; 18(9): 1027-1033.
https://doi.org/10.1111/j.1365-3040.1995.tb00613.x

71. Saiz-Lopez A., Fernandez R. P., Ordóñez C., Kinnison D.E., Gómez Martín J.C., Lamarque J.-F., Tilmes S. Iodine chemistry in the troposphere and its effect on ozone. Atmospheric Chemistry and Physics, 2014; 14: 13119-13143.
https://doi.org/10.5194/acp-14-13119-2014

72. Šeda M., Konečný R., Fiala K., Hladký J., Švehla J., Trávníček J. Iodine content in running surface waters in areas with more intensive landscape management in the Czech Republic. Journal of Elementology, 2017; 22(1): 295-304.

73. Seki M., Oikawa J., Taguchi T. et al. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils. Environmental Science & Technology, 2013; 47(1): 390-397.
https://doi.org/10.1021/es303228n
PMid:23194146

74. Shen S., Liu D., Wei C., Proksch P., Lin W. Purpuroines A-J, halogenated alkaloids from the sponge Iotrochota purpurea with antibiotic activity and regulation of tyrosine kinases. Bioorganic & Medicinal Chemistry, 2012; 20: 6924-6928.
https://doi.org/10.1016/j.bmc.2012.10.014
PMid:23131412

75. Shetaya W.H., Young S.D., Watts M.J., Ander E.L., Bailey E.H. Iodine dynamics in soils. Geochimica et Cosmochimica Acta, 2012; 77: 457-473.
https://doi.org/10.1016/j.gca.2011.10.034

76. Snitynsky V., Antonyak H. The hormonal regulation of blood respiratory function in cattle during the neonatal period. Annales De Zootechnie, 1995; 44 (Suppl. 1): 281.
https://doi.org/10.1051/animres:199505246

77. Snityns'kyĭ V.V., Antoniak H.L. Biochemical role of selenium. Ukr. Biokhim. Zh, 1994; 66(5): 3-16.

78. St. Germain D.L., Galton V.A., Hernandez A. Minireview: Defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology, 2009; 150(3): 1097-1107.
https://doi.org/10.1210/en.2008-1588
PMid:19179439 PMCid:PMC2654746

79. Su Y.D., Su J.H., Hwang T.L., Wen Z.H., Sheu J.H., Wu J.C., Sung P.J. Briarane diterpenoids isolated from Octocorals between 2014 and 2016. Marine Drugs, 2017; 15: 44.
https://doi.org/10.3390/md15020044
PMid:28218675 PMCid:PMC5334624

80. Sukhomlinov B.F., Antoniak G.L., Trikulenko A.V. Effect of thyroxine on the hemoglobin affinity to oxygen and 2,3-diphosphoglycerate level in rat erythrocytes. Ukrainskii Biokhimicheskii Zhurnal, 1986; 58(2): 84-86.

81. Sun J.-F., Huang H., Chai X.-Y., Yang X.-W., Meng L., Huang C.-G., Zhou X.-F., Yang B., Hu J., Chen X.-Q. Dichotellides A-E, five new iodine-containing briarane type diterpenoids from Dichotella gemmacea. Tetrahedron, 2011; 67(6): 1245-1250.
https://doi.org/10.1016/j.tet.2010.11.087

82. Tagami K., Uchida S. Concentrations of chlorine, bromine and iodine in Japanese rivers. Chemosphere, 2006; 65(11): 2358-2365.
https://doi.org/10.1016/j.chemosphere.2006.04.077
PMid:16777185

83. Targovnik H.M., Citterio C.E., Rivolta C.M. Iodide handling disorders (NIS, TPO, TG, IYD). Best Practice & Research Clinical Endocrinology & Metabolism, 2017; 31(2): 195-212.
https://doi.org/10.1016/j.beem.2017.03.006
PMid:28648508

84. Thompson C.K., Cline H.T. Thyroid hormone acts locally to increase neurogenesis, neuronal differentiation, and dendritic arbor elaboration in the tadpole visual system. Journal of Neuroscience, 2016; 36(40): 10356-10375.
https://doi.org/10.1523/JNEUROSCI.4147-15.2016
PMid:27707971 PMCid:PMC5050329

85. Thorenz U.R., Carpenter L.J., Huang R.-J. et al. Emission of iodine containing volatiles by selected microalgae species. Atmospheric Chemistry and Physics, 2014; 14: 13327-13335.
https://doi.org/10.5194/acp-14-13327-2014

86. Turoski V. Chlorine and Chlorine Compounds in the Paper Industry. CRC Press, 1997. 400 p.

87. Venturi S., Venturi M. Iodide, thyroid and stomach carcinogenesis: Evolutionary story of a primitive antioxidant? European Journal of Endocrinology, 1999; 140: 371-372.
https://doi.org/10.1530/eje.0.1400371

88. Vogt R. Iodine compounds in the atmosphere. In: Reactive Halogen Compounds in the Atmosphere (Fabian P., Singh O.N., eds). Berlin, Heidelberg: Springer, 1999. 113-127 p.
https://doi.org/10.1007/10628761_4

89. Watts M.J., O'Reilly J., Marcelli A., Coleman A., Ander E.L., Ward N.I. A snapshot of environmental iodine and selenium in La Pampa and San Juan provinces of Argentina. Journal of Geochemical Exploration, 2010; 107(2): 87-93.
https://doi.org/10.1016/j.gexplo.2009.11.002

90. Weng H.X., Yan A.L., Hong C.L., Qin YC, Pan L., Xie L.L. Biogeochemical transfer and dynamics of iodine in a soil-plant system. Environmental Geochemistry and Health, 2009; 31(3): 401-411.
https://doi.org/10.1007/s10653-008-9193-6
PMid:18563587

91. Whitehead D.C. The distribution and transformations of iodine in the environment. Environment International, 1984; 10: 321-339.
https://doi.org/10.1016/0160-4120(84)90139-9

92. Yen P.M., Brent G.A. Genomic and nongenomic actions of thyroid hormones. In: Werner and Ingbar's the thyroid: a fundamental and clinical text, 10th edn. (Braverman L.E., Cooper D.S., eds). Philadelphia: Lippincott, Williams & Wilkins, 2013: 127-137.

93. Zimmermann M.B. The importance of adequate iodine during pregnancy and infancy. World Review of Nutrition and Dietetics, 2016; 115: 118-124.
https://doi.org/10.1159/000442078
PMid:27198746

94. Zimmermann M.B., Boelaert K. Iodine deficiency and thyroid disorders. The Lancet Diabetes & Endocrinology, 2015; 3(4): 286-295.
https://doi.org/10.1016/S2213-8587(14)70225-6


Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 H. L. Antonyak, N. E. Panas, O. I. Pershyn, A. I. Polishchuk, N. K. Hoyvanovych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.