SIMULATION OF BEECH STAND DYNAMICS UNDER CLIMATE CHANGE CONDITIONS IN THE CARPATHIANS AND ROZTOCZE USING FORKOME MODEL

I. Kozak, T. Parpan, H. Kozak


DOI: http://dx.doi.org/10.30970/sbi.1001.455

Abstract


This paper presents a computer prognostic modeling of the beech (Fagus sylvatica L.) forests dynamics in the Carpathians and Roztocze using FORKOME model. The study was conducted in the Polish Bieszczady (Stuposiany forestry), Ukrainian Beskidy (Nadsanski Landscape Park) and in Polish Roztocze (Roztoczanski National Park) regions. The aim of this study was to carry out prognosis of possible dynamics of beech stands in Carpathians and Roztocze using computer model. For this purpose, a computer prognostic FORKOME model has been applied. Different scenario of changes were included: a control scenario, warm dry, warm humid, cold dry and cold humid. The simulations were realized for a time period covering next 500 years. Using the control scenario, FORKOME model predicted that for the next 500 years beech stands will dominate in terms of biomass and number of trees. The results have confirmed the periodic tendency of changes in stands consisting of biomass participation exchange between beech and fir. The obtained results are important issues for forest management and prognosis.


Keywords


prognosis, computer, modelling, forest, temperature, precipitation

Full Text:

PDF

References


1. Bugmann H. A review of forest gap models. Climatic Change, 2001, 51: 259−305.
https://doi.org/10.1023/A:1012525626267

2. Bugmann H. Predicting the ecosystem effects of climate change. In: Canham, C.D., Lauenroth, W. K. & Cole, J.S. (eds.). Models in ecosystem science. Princeton University Press, Princeton, 2003, p. 385-409.

3. Botkin D.B. Forest Dynamics: An Ecological Model. Oxford, New York, Oxford University Press, 1993. 309 p.

4. Botkin D.B., Janak J.F., Wallis J.R. Some Ecological Consequences of a computer Model of Forest Growth. Journal of Ecology, 1972; 60(3): 849-872.
https://doi.org/10.2307/2258570

5. Brooker R., Travis J., Clark E.J., Dytham C. Species' range shifts in a changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate change. J. Theor. Biol, 2007; 245: 59-65.
https://doi.org/10.1016/j.jtbi.2006.09.033
PMid:17087974

6. Frazer G.W., Canham C.D., Lertzman K.P. Gap Light Analyzer (GLA), Version 2.0: Image processing software to analyze true-colour, hemispherical canopy photographs. Bulletin Ecological Society of America, 2000; 81: 191-197.
https://doi.org/10.1890/0012-9623(2000)081[0190:TT]2.0.CO;2

7. Gessler A., Keitel K., Kreuzwieser J. et al. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 2007; 21(1): 1−11.
https://doi.org/10.1007/s00468-006-0107-x

8. Dale V.H., Tharp M.L., Lannom K.O., Hodges D. Modelling transient response of forests to climate change. Science of the Total Environ, 2010; 408: 1888-1901.
https://doi.org/10.1016/j.scitotenv.2009.11.050
PMid:20163827

9. Jaworski A., Podlaski R. Construction, structure and dynamics of natural stands in Reserve Święty Krzyż. ActaAgraria et Silvestria. Ser. Silvestris, 2006; 44: 9-38.

10. Kozak I., Menshutkin V. Prediction of beech forests succession in Bieszczady Mountains using a computer model. Journal of Forest Science, 2001; 47(8): 333-339.

11. Kozak I., Mikusiński G., Stępień A. et al. Forest dynamics in a nature reserve: a case study from south-central Sweden. Journal of Forest Science, 2012; 58(10): 436-445.
https://doi.org/10.17221/28/2012-JFS

12. Lindner M., Maroschek M., Netherer S. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage, 2010; 259(4): 698-709.
https://doi.org/10.1016/j.foreco.2009.09.023

13. Nagel J., Schmidt M. The Silvicultural Decision Support System BWINPro. In: Hasenauer H. (ed.): Sustainable Forest Management. Berlin, Springer, 2006, 59-63.
https://doi.org/10.1007/3-540-31304-4_4
PMid:16585269 PMCid:PMC2063789

14. Pacala S.W., Canham C.D., Silander J.A. Forest models defined by field measurements. The design of a northeastern forest simulator. Can. J. For. Res, 1993; 23: 1980-1988.
https://doi.org/10.1139/x93-249

15. Porte A., Bartelink H.H. Modelling mixed forest growth: a review of models for forest management. Ecological Modelling, 2002; 150: 141-188.
https://doi.org/10.1016/S0304-3800(01)00476-8

16. Prentice I.C., Leemans R. Pattern and process and the dynamics of forest structure: a simulation approach. Journal of Ecology, 1990; 78: 340-355.
https://doi.org/10.2307/2261116

17. Pretzsch H., Biber P., Dursky J. The single tree based stand simulator SILVA: Construction, application and evaluation. Forest Ecology and Management, 2002; 162: 3-21.
https://doi.org/10.1016/S0378-1127(02)00047-6

18. Scheller R.M., Mladenoff D.J. An ecological classification of forest landscape simulation models: Tools and strategies for understanding broad-scale forested ecosystems. Landscape Ecology, 2007; 22: 491-505.
https://doi.org/10.1007/s10980-006-9048-4

19. Shugart H.H. Theory of Forests Dynamics. New York: Springer, 1984. 278 p.
https://doi.org/10.1007/978-1-4419-8748-8

20. Shugart H.H., West D.C. Development of an Appalachian deciduous forest model and its application to assessment of the impact of the chestnut blight. Journal of Biogeography, 1977; 5: 161-179.

21. Urban D.L. A versatile model to simulate forest pattern: a user's guide to ZELIG version 1.0. Charlottesville, VA: University of Virginia, Environmental Sciences Department. Forest Ecology and Management, 1990; 42: 95-110.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.