GLUTATHIONE ANTIOXIDANT SYSTEM STATUS OF MEN WITH ERECTILE DYSFUNCTION DUE TO COMBAT TRAUMA

Roman Fafula, Mykola Vorobets, Dmytro Vorobets, Olena Onufrovych, Zoryana Fedorovych, Anna Besedina, Natalia Gromnatska, Andrij Sybirnyy, Zinoviy Vorobets, Orest Chemerys


DOI: http://dx.doi.org/10.30970/sbi.1901.819

Abstract


Introduction. Most military personnel survive serious injuries, but many are left to live with long-term sexual and reproductive disorders. The injuries often result in psychological trauma and post-traumatic stress disorder, which negatively affect behavioral health and sexual function. There is emerging evidence linking erectile dysfunction (ED) to oxidative stress. Overall, combat trauma is characterized by a broad response of the body to harmful effects involving all body systems, leading to significant changes in the pro-oxidant-antioxidant balance.
Materials and Methods. The study was conducted on peripheral blood lymphocytes and serum of men with ED due to combat trauma (shrapnel and bullet wounds) and healthy men (control group). Both the study and control groups were divided into two age groups (young and middle age groups). Antioxidant activity was studied by measuring glutathione peroxidase (GP), glutathione reductase (GR) and glutathione-S-transferase (GsT).
Results. A comparison of the groups using the Kruskal–Wallis method revealed a significant decrease in the GPx and GR activity in blood lymphocytes and serum in men with ED due to combat trauma compared with healthy men of corresponding age groups. It was shown that GPx activity in peripheral blood lymphocytes of patients of the young age group was 1.64-fold lower, and in patients of the middle age group 1.70-fold lower than in the control group (P <0.001). Similar changes were observed in blood serum. GR activity in blood lymphocytes in patients of the young and middle age groups was 1.42-fold lower than in healthy men (P <0.001). In blood serum, GR activity in patients of the young age group was 1.70-fold (P <0.001) and in patients of the middle age group 1.56-fold lower than in healthy men (P <0.001). GsT activity in blood lymphocytes in both age groups increases by 1.2-fold, however these changes were not significant (P >0.05).
Conclusion. Erectile dysfunction caused by combat trauma is accompanied by a significant decrease in the activities of antioxidant defense enzymes – glutathione peroxidase and glutathione reductase. There is no difference between age groups of patients with erectile dysfunction due to combat trauma. However, the activity of glutathione S-transferase practically does not change, although there is a tendency for its increase.


Keywords


glutathione peroxidase, glutathione reductase, glutathione-S-transferase, erectile dysfunction, combat trauma

Full Text:

PDF

References


Banti, M., Walter, J., Hudak, S., & Soderdahl, D. (2016). Improvised explosive device-related lower genitourinary trauma in current overseas combat operations. Journal of Trauma and Acute Care Surgery, 80(1), 131-134. doi:10.1097/ta.0000000000000864
CrossrefPubMedGoogle Scholar

Bird, E. R., Piccirillo, M., Garcia, N., Blais, R., & Campbell, S. (2021). Relationship between posttraumatic stress disorder and sexual difficulties: a systematic review of veterans and military personnel. The Journal of Sexual Medicine, 18(8), 1398-1426. doi:10.1016/j.jsxm.2021.05.011
CrossrefPubMedPMCGoogle Scholar

Bjugstad, K. B., Rael, L. T., Levy, S., Carrick, M., Mains, C. W., Slone, D. S., & Bar-Or, D. (2016). Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxidative Medicine and Cellular Longevity, 2016(1), 6974257. doi:10.1155/2016/6974257
CrossrefPubMedPMCGoogle Scholar

Breyer, B. N., Cohen, B. E., Bertenthal, D., Rosen, R. C., Neylan, T. C., & Seal, K. H. (2014). Sexual dysfunction in male Iraq and Afghanistan war veterans: association with posttraumatic stress disorder and other combat-related mental health disorders: a population-based cohort study. The Journal of Sexual Medicine, 11(1), 75-83. doi:10.1111/jsm.12201
CrossrefPubMedPMCGoogle Scholar

Castillo, O., Chen, I. K., Amini, E., Yafi, F. A., & Barham, D. W. (2022). Male sexual health related complications among combat veterans. Sexual Medicine Reviews, 10(4), 691-697. doi:10.1016/j.sxmr.2022.06.002
CrossrefGoogle Scholar

Chen, M., Zhang, Z., Zhou, R., Li, B., Jiang, J., & Shi, B. (2024). The relationship between oxidative balance score and erectile dysfunction in the U.S. male adult population. Scientific Reports, 14(1), 10746. doi:10.1038/s41598-024-61287-w
CrossrefPubMedPMCGoogle Scholar

Danielsson, F. B., Schultz Larsen, M., Nørgaard, B., & Lauritsen, J. M. (2018). Quality of life and level of post-traumatic stress disorder among trauma patients: a comparative study between a regional and a university hospital. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 26(1), 44. doi:10.1186/s13049-018-0507-0
CrossrefPubMedPMCGoogle Scholar

Farombi, E. O., Adelowo, O. A., & Ajimoko, Y. R. (2007). Biomarkers of oxidative stress and heavy metal levels as indicators of environmental pollution in African cat fish (Clarias gariepinus) from Nigeria Ogun River. International Journal of Environmental Research and Public Health, 4(2), 158-165. doiI10.3390/ijerph2007040011
CrossrefPubMedPMCGoogle Scholar

Fishman, J. E., Levy, G., Alli, V., Sheth, S., Lu, Q., & Deitch, E. A. (2013). Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure. American Journal of Physiology-Gastrointestinal and Liver Physiology, 304(1), G57-G63. doi:10.1152/ajpgi.00170.2012
CrossrefPubMedPMCGoogle Scholar

Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q., & Griendling, K. K. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research, 122(6), 877-902. doi:10.1161/circresaha.117.311401
CrossrefPubMedPMCGoogle Scholar

Frati, A., Cerretani, D., Fiaschi, A., Frati, P., Gatto, V., La Russa, R., Pesce, A., Pinchi, E., Santurro, A., Fraschetti, F., & Fineschi, V. (2017). Diffuse axonal injury and axidative stress: a comprehensive review. International Journal of Molecular Sciences, 18(12), 2600. doi:10.3390/ijms18122600
CrossrefPubMedPMCGoogle Scholar

Georgiou-Siafis, S. K., & Tsiftsoglou, A. S. (2023). The key role of GSH in keeping the redox balance in mammalian cells: mechanisms and significance of GSH in detoxification via formation of conjugates. Antioxidants, 12(11), 1953. doi:10.3390/antiox12111953
CrossrefPubMedPMCGoogle Scholar

Highfill-McRoy, R. M., Levine, J. A., Larson, G. E., Norman, S. B., Schmied, E. A., & Thomsen, C. J. (2022). Predictors of symptom increase in subsyndromal PTSD among previously deployed military personnel. Military Medicine, 187(5-6), e711-e717. doi:10.1093/milmed/usab034
CrossrefPubMedPMCGoogle Scholar

Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97(10), 2499-2574. doi:10.1007/s00204-023-03562-9
CrossrefPubMedPMCGoogle Scholar

Ince, C., & Mik, E. G. (2016). Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. Journal of Applied Physiology, 120(2), 226-235. doi:10.1152/japplphysiol.00298.2015
CrossrefPubMedGoogle Scholar

Kaltsas, A., Zikopoulos, A., Dimitriadis, F., Sheshi, D., Politis, M., Moustakli, E., Symeonidis, E. N., Chrisofos, M., Sofikitis, N., & Zachariou, A. (2024). Oxidative stress and erectile dysfunction: pathophysiology, impacts, and potential treatments. Current Issues in Molecular Biology, 46(8), 8807-8834. doi:10.3390/cimb46080521
CrossrefPubMedPMCGoogle Scholar

Kanďár, R., & Hájková, N. (2014). Assay of total glutathione and glutathione disulfide in seminal plasma of male partners of couples presenting for a fertility evaluation. Andrologia, 46(10), 1079-1088. doi:10.1111/and.12176
CrossrefPubMedGoogle Scholar

Lapenna, D. (2023). Glutathione and glutathione-dependent enzymes: from biochemistry to gerontology and successful aging. Ageing Research Reviews, 92, 102066. doi:10.1016/j.arr.2023.102066
CrossrefPubMedGoogle Scholar

Matsumoto, K. I., Mitchell, J. B., & Krishna, M. C. (2019). Effects of oxygen challenging to tissue redox and pO2 status. Free Radical Biology and Medicine, 130, 343-347. doi:10.1016/j.freeradbiomed.2018.10.454
CrossrefPubMedPMCGoogle Scholar

Onufrovych, O. K., Fafula, R. V., Vorobets, M. Z., Besedina, A. S., Melnyk, O. V., Vorobets, D. Z., & Vorobets, Z. D. (2024). Parameters of oxidative, nitrasive and anti-oxidative status in men with erectile dys-function due to combat trauma. Regulatory Mechanisms in Biosystems, 15(1), 97-101. doi:10.15421/022414
CrossrefGoogle Scholar

Reyes, L. A., Boslett, J., Varadharaj, S., De Pascali, F., Hemann, C., Druhan, L. J., Ambrosio, G., El-Mahdy, M., & Zweier, J. L. (2015). Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 11648-11653. doi:10.1073/pnas.1505556112
CrossrefPubMedPMCGoogle Scholar

Schwarz, C., Fitschek, F., Bar-Or, D., Klaus, D. A., Tudor, B., Fleischmann, E., Roth, G., Tamandl, D., Wekerle, T., Gnant, M., Bodingbauer, M., & Kaczirek, K. (2017). Inflammatory response and oxidative stress during liver resection. PLoS One, 12(10), e0185685. doi:10.1371/journal.pone.0185685
CrossrefPubMedPMCGoogle Scholar

Tagliabue, M., Pinach, S., Di Bisceglie, C., Brocato, L., Cassader, M., Bertagna, A., Manieri, C., & Pescarmona, G. P. (2005). Glutathione levels in patients with erectile dysfunction, with or without diabetes mellitus. International Journal of Andrology, 28(3), 156-162. doi:10.1111/j.1365-2605.2005.00528.x
CrossrefPubMedGoogle Scholar

Tramer, F., Caponecchia, L., Sgrò, P., Martinelli, M., Sandri, G., Panfili, E., Lenzi, A., & Gandini, L. (2004). Native specific activity of glutathione peroxidase (GPx-1), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and glutathione reductase (GR) does not differ between normo- and hypomotile human sperm samples. International Journal of Andrology, 27(2), 88-93. doi:10.1046/j.1365-2605.2003.00452.x
CrossrefPubMedGoogle Scholar

Vašková, J., Kočan, L., Vaško, L., & Perjési, P. (2023). Glutathione-related enzymes and proteins: a review. Molecules, 28(3), 1447. doi:10.3390/molecules28031447
CrossrefPubMedPMCGoogle Scholar

Vorobets, M. Z., Fafula, R. V., Besedina, A. S., Onufrovych, O. K., & Vorobets, D. Z. (2018). Glutathione s-transferase as a marker of oxidative stress in human ejaculated spermatozoa from patients with pathospermia. Regulatory Mechanisms in Biosystems, 9(2), 287-292. doi:10.15421/021842
CrossrefGoogle Scholar

Vorobets, M. Z., Vorobets, D. Z., Chaplyk, V. V., Onufrovych, O. K., Besedina, A. S., Fafula, R. V., Vorobets, Z. D., & Chemerys, O. M. (2024). The diagnostic value of the NO-synthase, Ca2+- and Na+-dependent ATP-hydrolase systems and the therapeutic potential of NO-stimulators in erectile dysfunction of men injured as a result of combat operations (combat trauma). Regulatory Mechanisms in Biosystems, 15(4), 760-766. doi:10.15421/0224110
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Roman Fafula, Mykola Vorobets, Dmytro Vorobets, Olena Onufrovych, Zoryana Fedorovych, Anna Besedina, Natalia Gromnatska, Andrij Sybirnyy, Zinoviy Vorobets, Orest Chemerys

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.