FLUORESCEIN-CONTAINING AMPHIPHILIC COPOLYMERS AS PROMISING OBJECTS FOR BIOMEDICAL RESEARCH

Maria Yakoviv, Nataliia Nosova, Dmytro Ostapiv, Iryna Yaremchuk, Zoriana Nadashkevych, Volodymyr Samaryk, Serhii Varvarenko


DOI: http://dx.doi.org/10.30970/sbi.1901.814

Abstract


Background. Polymeric nanoparticles are increasingly used as drug carriers. They demonstrate a significant improvement in the therapeutic efficacy of drugs and are widely studied as components of drug transport and release systems. Unlike other types of nanoparticles, depending on the nature and properties, polymeric carriers can be designed to target specific organs, tissues, or cells and ultimately biodegrade with minimal systemic toxicity. The study aimed to investigate the in vitro cytotoxicity of drug delivery systems based on nanoparticles of fluorescein-containing amphiphilic copolymers, as well as to assess their ability to penetrate the cell and the possibility of controlling this process.
Materials and Methods. Copolymers obtained on the basis of 2-(dodecanoylamino)pentanedioic acid and 2-(octadecanoylamino)pentanedioic acid, polyethylene ether­diols, and fluorescein were used for the study. The surface-active properties of the copolymers and the solubilization ability of their colloidal solutions were examined. The cytotoxicity of fluorescein-containing copolymers and the activity of cellular enzymes were studied on live spermatozoa obtained from bull ejaculates of 2–6 mL, with a sperm concentration of 0.6–1.5×109 cells/mL and an activity of 7.5–8.0 points.
Results. Two groups of amphiphilic copolyesters, with molar weights of polyethy­lene etherdiols from 600 to 1500 and different content of fluorescein were studied. Their surface-active properties and ability to solubilize lipophilic substances – drug analogs – were determined. It was found that the obtained copolyester dispersions do not exhibit cytotoxicity. During direct contact with germ cells, copolymers can penetrate the cell membrane and decompose with the release of fluorescein. This allows us to track their location in the structures of germ cells.
Conclusion. The relationship between the structure of amphiphilic fluorescein-containing copolyester and the degree of their effect on living objects in vitro has been established. The composition of copolymers that do not exhibit cytotoxicity and can be used as drug transporters has been determined. It has been shown that the synthesized copolymers can penetrate the membrane of germ cells and are decomposed during metabolic processes in sperm with the release of fluorescein.


Keywords


amphiphilic copolyester, fluorescein, cytotoxicity, enzyme activity

Full Text:

PDF

References


Anestopoulos, I., Kiousi, D. E., Klavaris, A., Galanis, A., Salek, K., Euston, S. R., Pappa, A., & Panayiotidis, M. I. (2020). Surface active agents and their health-promoting properties: molecules of multifunctional significance. Pharmaceutics, 12(7), 688. doi:10.3390/pharmaceutics12070688
CrossrefPubMedPMCGoogle Scholar

Bhat, I. A., Roy, B., & Kabir-ud-Din. (2019). Micelles of cleavable gemini surfactant induce fluorescence switching in novel probe: industrial insight. Journal of Industrial and Engineering Chemistry, 77, 60-64. doi:10.1016/j.jiec.2019.04.035
CrossrefGoogle Scholar

Bukartyk, M., Nosova, N., Maikovych, O., Bukartyk, N., Stasiuk, A., Dron, I., Fihurka, N., Khomyak, S., Ostapiv, D., Vlizlo, V., Samaryk, V., & Varvarenko, S. (2022). Preparation and research of properties of combined alginate/gelatin hydrogels. Journal of Chemistry and Technologies, 30(1),11-20. doi:10.15421/jchemtech.v30i1.242230
CrossrefGoogle Scholar

Caddeo, C., Manconi, M., Fadda, A. M., Lai, F., Lampis, S., Diez-Sales, O., & Sinico, C. (2013). Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids and Surfaces B: Biointerfaces, 111, 327-332. doi:10.1016/j.colsurfb.2013.06.016
CrossrefPubMedGoogle Scholar

Chekh, B. O. C., Ferens, M. V., Ostapiv, D. D., Samaryk, V. Y., Varvarenko, S. M., & Vlizlo, V. V. (2017). Characteristics of novel polymer based on pseudo-polyamino acids GluLa-DPG-PEG600: binding of albumin, biocompatibility, biodistribution and potential crossing the blood-brain barrier in rats. The Ukrainian Biochemical Journal, 89(4), 13-21. doi:10.15407/ubj89.04.013
CrossrefGoogle Scholar

Cho, I. K., & Easley, C. A. (2023). Recent developments in in vitro spermatogenesis and future directions. Reproductive Medicine, 4(3), 215-232. doi:10.3390/reprodmed4030020
CrossrefGoogle Scholar

Eom, S., Choi, G., Nakamura, H., & Choy, J.-H. (2020). 2-Dimensional nanomaterials with imaging and diagnostic functions for nanomedicine; a review. Bulletin of the Chemical Society of Japan, 93(1), 1-12. doi:10.1246/bcsj.20190270
CrossrefGoogle Scholar

Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70-77. doi:10.1016/j.glohj.2023.02.008
CrossrefGoogle Scholar

Hang, Y., Boryczka, J., & Wu, N. (2022). Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chemical Society Reviews, 51(1), 329-375. doi:10.1039/c9cs00621d
CrossrefPubMedPMCGoogle Scholar

Gheorghita, R., Anchidin-Norocel, L., Filip, R., Dimian, M., & Covasa, M. (2021). Applications of biopolymers for drugs and probiotics delivery. Polymers, 13(16), 2729. doi:10.3390/polym13162729
CrossrefPubMedPMCGoogle Scholar

Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., & Nicoli, S. (2021). Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 332, 312-336. doi:10.1016/j.jconrel.2021.02.031
CrossrefPubMedGoogle Scholar

Gref, R., Domb, A., Quellec, P., Blunk, T., Müller, R. H., Verbavatz, J. M., & Langer, R. (1995). The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews, 16(2-3), 215-233. doi:10.1016/0169-409x(95)00026-4
CrossrefPubMedPMCGoogle Scholar

Kоrnyat, S., Sharan, M., Ostapiv, D., Korbeckij, A., Jaremchuk, I., & Andrushko, O. (2021). Quality of deconserved bull sperm for the action of nanosuccinates Zn, Cu and Mn in the diluents. The Animal Biology, 23(1), 23-29. doi:10.15407/animbiol23.01.023 (In Ukrainian)
CrossrefGoogle Scholar

Lam, P.-L., Wong, W.-Y., Bian, Z., Chui, C.-H., & Gambari, R. (2017). Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine, 12(4), 357-385. doi:10.2217/nnm-2016-0305
CrossrefPubMedGoogle Scholar

Lee, B. B., Chan, E. S., Ravindra, P., & Khan, T. A. (2012). Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polymer Bulletin, 69(4), 471-489. doi:10.1007/s00289-012-0782-2
CrossrefGoogle Scholar

Liu, R.-L., & Cai, R.-Q. (2022). Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging. Journal of Pharmaceutical Analysis, 12(4), 530-540. doi:10.1016/j.jpha.2021.10.002
CrossrefPubMedPMCGoogle Scholar

Liubas, N., Iskra, R., Stadnytska, N., Monka, N., Havryliak, V., & Lubenets, V. (2022). Antioxidant activity of thiosulfonate compounds in experiments in vitro and in vivo. Biointerface Research in Applied Chemistry, 12(3), 3106-3116. doi:10.33263/briac123.31063116
CrossrefGoogle Scholar

Luan, X., Pan, Y., Gao, Y., & Song, Y. (2021). Recent near-infrared light-activated nanomedicine toward precision cancer therapy. Journal of Materials Chemistry B, 9(35), 7076-7099. doi:10.1039/d1tb00671a
CrossrefPubMedGoogle Scholar

Lucarini, S., Fagioli, L., Cavanagh, R., Liang, W., Perinelli, D. R., Campana, M., Stolnik, S., Lam, J. K. W., Casettari, L., & Duranti, A. (2018). Synthesis, structure-activity relationships and in vitro toxicity profile of lactose-based fatty acid monoesters as possible drug permeability enhancers. Pharmaceutics, 10(3), 81. doi:10.3390/pharmaceutics10030081
CrossrefPubMedPMCGoogle Scholar

Lyu, S., & Untereker, D. (2009). Degradability of polymers for implantable biomedical devices. International Journal of Molecular Sciences, 10(9), 4033-4065. doi:10.3390/ijms10094033
CrossrefPubMedPMCGoogle Scholar

Morrell, J. M., Valeanu, A. S., Lundeheim, N., & Johannisson, A. (2018). Sperm quality in frozen beef and dairy bull semen. Acta Veterinaria Scandinavica, 60(1), 41. doi:10.1186/s13028-018-0396-2
CrossrefPubMedPMCGoogle Scholar

Myers, D. (2006). Polymeric surfactants and surfactant-polymer interactions. In: Surfactants science and technology (pp. 220-244). New Jersey: Wiley. doi:10.1002/047174607X.ch7
CrossrefGoogle Scholar

Nicolas, J., Magli, S., Rabbachin, L., Sampaolesi, S., Nicotra, F., & Russo, L. (2020). 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules, 21(6), 1968-1994. doi:10.1021/acs.biomac.0c00045
CrossrefPubMedGoogle Scholar

Parker, A. L., Newman, C., Briggs, S., Seymour, L., & Sheridan, P. J. (2003). Nonviral gene delivery: techniques and implications for molecular medicine. Expert Reviews in Molecular Medicine, 5(22), 1-15. doi:10.1017/s1462399403006562
CrossrefPubMedGoogle Scholar

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. del P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. doi:10.1186/s12951-018-0392-8
CrossrefPubMedPMCGoogle Scholar

Shamma, R. N., Sayed, R. H., Madry, H., EL Sayed, N. S., & Cucchiarini, M. (2022). Triblock copolymer bioinks in hydrogel three-dimensional printing for regenerative medicine: a focus on pluronic F127. Tissue Engineering Part B: Reviews, 28(2), 451-463. doi:10.1089/ten.teb.2021.0026
CrossrefPubMedGoogle Scholar

Stasiuk, A. V., Fihurka, N. V., Tarnavchyk, I. T., Nosova, N. G., Pasetto, P., Varvarenko, S. M., & Samaryk, V. Y. (2022). Influence of structure and nature of pseudo-poly(amino acid)s on size and morphology of their particle in self-stabilized aqueous dispersions. Applied Nanoscience, 13(7), 5011-5019. doi:10.1007/s13204-022-02664-7
CrossrefGoogle Scholar

Stetsyshyn, Y., Raczkowska, J., Harhay, K., Awsiuk, K., Shymborska, Y., Nastyshyn, S., Ohar, H., Vasilyev, V., Ostapiv, D., Sharan, M., Sharan, O., Voronov, S., & Budkowski, A. (2020). Grafted polymer brush coatings for growth of cow granulosa cells and oocyte-cumulus cell complexes. Biointerphases, 15(3), 031006. doi:10.1116/6.0000183
CrossrefPubMedGoogle Scholar

Tihauan, B.-M., Marinas, I.-C., Bleotu, C., Dolete, G., Onisei, T., Serbancea, F., Mateescu, C., & Rascol, M. R. (2021). Evaluation of cytotoxicity, nutritional and antioxidative status of lyophilized plant extracts used in dietary supplements. Romanian Biotechnological Letters, 26(2), 2396-2405. doi:10.25083/rbl/26.2/2396.2405
CrossrefGoogle Scholar

Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release, 73(2-3), 137-172. doi:10.1016/s0168-3659(01)00299-1
CrossrefPubMedGoogle Scholar

Yakoviv, M. V., Varvarenko, S. М., Samaryk, V. Ya., Nosovа, N. G., Fihurka, N. V., Maikovych, O. V., Dron, I. A., & Voronov, S. A. (2020). Peculiarities of the molecular weight distribution of fluorescein-containing copolyesters synthesized by the steglich reaction. Journal of Chemistry and Technologies, 28(1), 10-16. doi:10.15421/082002
CrossrefGoogle Scholar

Yakoviv, M. V., Nosova, N. G., Samaryk, V. Y., Pasetto, P., & Varvarenko, S. M. (2020). Study of physical interactions of fluorescein-containing amphiphilic copolyesters with albumin in aqueous dispersions. Applied Nanoscience, 10(8), 2655-2663. doi:10.1007/s13204-019-00987-6
CrossrefGoogle Scholar

Yakoviv, M., Fihurka, N., Nosova, N., Samaryk, V., Vasylyshyn, T., Hermanovych, S., Voronov, S., & Varvarenko, S. (2018). Researches of amphiphilic properties of copolyesters with chromophore groups. Chemistry & Chemical Technology, 12(3), 318-325. doi:10.23939/chcht12.03.318
CrossrefGoogle Scholar

Yang, B., Chen, Y., & Shi, J. (2020). Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angewandte Chemie International Edition, 59(24), 9693-9701. doi:10.1002/anie.202002306
CrossrefPubMedGoogle Scholar

Yu, J., Qiu, H., Yin, S., Wang, H., & Li, Y. (2021). Polymeric drug delivery system based on pluronics for cancer treatment. Molecules, 26(12), 3610. doi:10.3390/molecules26123610
CrossrefPubMedPMCGoogle Scholar

Vakilzadeh, H., Varshosaz, J., & Minaiyan, M. (2018). Pulmonary delivery of triptorelin loaded in pluronic based nanomicelles in rat model. Current Drug Delivery, 15(5), 630-640. doi:10.2174/1567201815666180209113735
CrossrefPubMedGoogle Scholar

Varvarenko, S. M., Ferens, M. V., Samaryk, V. Ya., Nosova, N. G., Fihurka, N. V., Ostapiv, D. D., & Voronov, S. A. (2018). Synthesis of copolyesters of fluorescein and 2-(dodecanamino) pentanedionic acid via Steglich reaction. Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 5-15. (In Ukrainian)
Google Scholar

Varshosaz, J., Taymouri, S., Minaiyan, M., Rastegarnasab, F., & Baradaran, A. (2018). Development and in vitro/in vivo evaluation of HPMC/chitosan gel containing simvastatin loaded self-assembled nanomicelles as a potent wound healing agent. Drug Development and Industrial Pharmacy, 44(2), 276-288. doi:10.1080/03639045.2017.1391832
CrossrefPubMedGoogle Scholar

Wang, M., Chen, M., Niu, W., Winston, D. D., Cheng, W., & Lei, B. (2020). Injectable biodegradation-visual self-healing citrate hydrogel with high tissue penetration for microenvironment-responsive degradation and local tumor therapy. Biomaterials, 261, 120301. doi:10.1016/j.biomaterials.2020.120301
CrossrefPubMedGoogle Scholar

Wu, J., Gao, H., Shi, D., Yang, Y., Zhang, Y., & Zhu, W. (2020). Cationic gemini surfactants containing both amide and ester groups: synthesis, surface properties and antibacterial activity. Journal of Molecular Liquids, 299, 112248. doi:10.1016/j.molliq.2019.112248
CrossrefGoogle Scholar

Wu, Y., Zhou, D., Qi, Y., Xie, Z., Chen, X., Jing, X., & Huang, Y. (2015). Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Advances, 5(40), 31972-31983. doi:10.1039/c5ra03423j
CrossrefGoogle Scholar

Udayakumar, G. P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A., & Show, P. L. (2021). Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322. doi:10.1016/j.jece.2021.105322
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Maria Yakoviv, Nataliia Nosova, Dmytro Ostapiv, Iryna Yaremchuk, Zoriana Nadashkevych, Volodymyr Samaryk, Serhii Varvarenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.