FLUORESCEIN-CONTAINING AMPHIPHILIC COPOLYMERS AS PROMISING OBJECTS FOR BIOMEDICAL RESEARCH
DOI: http://dx.doi.org/10.30970/sbi.1901.814
Abstract
Background. Polymeric nanoparticles are increasingly used as drug carriers. They demonstrate a significant improvement in the therapeutic efficacy of drugs and are widely studied as components of drug transport and release systems. Unlike other types of nanoparticles, depending on the nature and properties, polymeric carriers can be designed to target specific organs, tissues, or cells and ultimately biodegrade with minimal systemic toxicity. The study aimed to investigate the in vitro cytotoxicity of drug delivery systems based on nanoparticles of fluorescein-containing amphiphilic copolymers, as well as to assess their ability to penetrate the cell and the possibility of controlling this process.
Materials and Methods. Copolymers obtained on the basis of 2-(dodecanoylamino)pentanedioic acid and 2-(octadecanoylamino)pentanedioic acid, polyethylene etherdiols, and fluorescein were used for the study. The surface-active properties of the copolymers and the solubilization ability of their colloidal solutions were examined. The cytotoxicity of fluorescein-containing copolymers and the activity of cellular enzymes were studied on live spermatozoa obtained from bull ejaculates of 2–6 mL, with a sperm concentration of 0.6–1.5×109 cells/mL and an activity of 7.5–8.0 points.
Results. Two groups of amphiphilic copolyesters, with molar weights of polyethylene etherdiols from 600 to 1500 and different content of fluorescein were studied. Their surface-active properties and ability to solubilize lipophilic substances – drug analogs – were determined. It was found that the obtained copolyester dispersions do not exhibit cytotoxicity. During direct contact with germ cells, copolymers can penetrate the cell membrane and decompose with the release of fluorescein. This allows us to track their location in the structures of germ cells.
Conclusion. The relationship between the structure of amphiphilic fluorescein-containing copolyester and the degree of their effect on living objects in vitro has been established. The composition of copolymers that do not exhibit cytotoxicity and can be used as drug transporters has been determined. It has been shown that the synthesized copolymers can penetrate the membrane of germ cells and are decomposed during metabolic processes in sperm with the release of fluorescein.
Keywords
Full Text:
PDFReferences
Anestopoulos, I., Kiousi, D. E., Klavaris, A., Galanis, A., Salek, K., Euston, S. R., Pappa, A., & Panayiotidis, M. I. (2020). Surface active agents and their health-promoting properties: molecules of multifunctional significance. Pharmaceutics, 12(7), 688. doi:10.3390/pharmaceutics12070688 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bhat, I. A., Roy, B., & Kabir-ud-Din. (2019). Micelles of cleavable gemini surfactant induce fluorescence switching in novel probe: industrial insight. Journal of Industrial and Engineering Chemistry, 77, 60-64. doi:10.1016/j.jiec.2019.04.035 Crossref ● Google Scholar | ||||
| ||||
Bukartyk, M., Nosova, N., Maikovych, O., Bukartyk, N., Stasiuk, A., Dron, I., Fihurka, N., Khomyak, S., Ostapiv, D., Vlizlo, V., Samaryk, V., & Varvarenko, S. (2022). Preparation and research of properties of combined alginate/gelatin hydrogels. Journal of Chemistry and Technologies, 30(1),11-20. doi:10.15421/jchemtech.v30i1.242230 Crossref ● Google Scholar | ||||
| ||||
Caddeo, C., Manconi, M., Fadda, A. M., Lai, F., Lampis, S., Diez-Sales, O., & Sinico, C. (2013). Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids and Surfaces B: Biointerfaces, 111, 327-332. doi:10.1016/j.colsurfb.2013.06.016 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chekh, B. O. C., Ferens, M. V., Ostapiv, D. D., Samaryk, V. Y., Varvarenko, S. M., & Vlizlo, V. V. (2017). Characteristics of novel polymer based on pseudo-polyamino acids GluLa-DPG-PEG600: binding of albumin, biocompatibility, biodistribution and potential crossing the blood-brain barrier in rats. The Ukrainian Biochemical Journal, 89(4), 13-21. doi:10.15407/ubj89.04.013 Crossref ● Google Scholar | ||||
| ||||
Cho, I. K., & Easley, C. A. (2023). Recent developments in in vitro spermatogenesis and future directions. Reproductive Medicine, 4(3), 215-232. doi:10.3390/reprodmed4030020 Crossref ● Google Scholar | ||||
| ||||
Eom, S., Choi, G., Nakamura, H., & Choy, J.-H. (2020). 2-Dimensional nanomaterials with imaging and diagnostic functions for nanomedicine; a review. Bulletin of the Chemical Society of Japan, 93(1), 1-12. doi:10.1246/bcsj.20190270 Crossref ● Google Scholar | ||||
| ||||
Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70-77. doi:10.1016/j.glohj.2023.02.008 Crossref ● Google Scholar | ||||
| ||||
Hang, Y., Boryczka, J., & Wu, N. (2022). Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chemical Society Reviews, 51(1), 329-375. doi:10.1039/c9cs00621d Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gheorghita, R., Anchidin-Norocel, L., Filip, R., Dimian, M., & Covasa, M. (2021). Applications of biopolymers for drugs and probiotics delivery. Polymers, 13(16), 2729. doi:10.3390/polym13162729 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., & Nicoli, S. (2021). Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 332, 312-336. doi:10.1016/j.jconrel.2021.02.031 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gref, R., Domb, A., Quellec, P., Blunk, T., Müller, R. H., Verbavatz, J. M., & Langer, R. (1995). The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews, 16(2-3), 215-233. doi:10.1016/0169-409x(95)00026-4 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kоrnyat, S., Sharan, M., Ostapiv, D., Korbeckij, A., Jaremchuk, I., & Andrushko, O. (2021). Quality of deconserved bull sperm for the action of nanosuccinates Zn, Cu and Mn in the diluents. The Animal Biology, 23(1), 23-29. doi:10.15407/animbiol23.01.023 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Lam, P.-L., Wong, W.-Y., Bian, Z., Chui, C.-H., & Gambari, R. (2017). Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine, 12(4), 357-385. doi:10.2217/nnm-2016-0305 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lee, B. B., Chan, E. S., Ravindra, P., & Khan, T. A. (2012). Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polymer Bulletin, 69(4), 471-489. doi:10.1007/s00289-012-0782-2 Crossref ● Google Scholar | ||||
| ||||
Liu, R.-L., & Cai, R.-Q. (2022). Recent advances in ultrasound-controlled fluorescence technology for deep tissue optical imaging. Journal of Pharmaceutical Analysis, 12(4), 530-540. doi:10.1016/j.jpha.2021.10.002 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Liubas, N., Iskra, R., Stadnytska, N., Monka, N., Havryliak, V., & Lubenets, V. (2022). Antioxidant activity of thiosulfonate compounds in experiments in vitro and in vivo. Biointerface Research in Applied Chemistry, 12(3), 3106-3116. doi:10.33263/briac123.31063116 Crossref ● Google Scholar | ||||
| ||||
Luan, X., Pan, Y., Gao, Y., & Song, Y. (2021). Recent near-infrared light-activated nanomedicine toward precision cancer therapy. Journal of Materials Chemistry B, 9(35), 7076-7099. doi:10.1039/d1tb00671a Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lucarini, S., Fagioli, L., Cavanagh, R., Liang, W., Perinelli, D. R., Campana, M., Stolnik, S., Lam, J. K. W., Casettari, L., & Duranti, A. (2018). Synthesis, structure-activity relationships and in vitro toxicity profile of lactose-based fatty acid monoesters as possible drug permeability enhancers. Pharmaceutics, 10(3), 81. doi:10.3390/pharmaceutics10030081 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Lyu, S., & Untereker, D. (2009). Degradability of polymers for implantable biomedical devices. International Journal of Molecular Sciences, 10(9), 4033-4065. doi:10.3390/ijms10094033 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Morrell, J. M., Valeanu, A. S., Lundeheim, N., & Johannisson, A. (2018). Sperm quality in frozen beef and dairy bull semen. Acta Veterinaria Scandinavica, 60(1), 41. doi:10.1186/s13028-018-0396-2 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Myers, D. (2006). Polymeric surfactants and surfactant-polymer interactions. In: Surfactants science and technology (pp. 220-244). New Jersey: Wiley. doi:10.1002/047174607X.ch7 Crossref ● Google Scholar | ||||
| ||||
Nicolas, J., Magli, S., Rabbachin, L., Sampaolesi, S., Nicotra, F., & Russo, L. (2020). 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules, 21(6), 1968-1994. doi:10.1021/acs.biomac.0c00045 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Parker, A. L., Newman, C., Briggs, S., Seymour, L., & Sheridan, P. J. (2003). Nonviral gene delivery: techniques and implications for molecular medicine. Expert Reviews in Molecular Medicine, 5(22), 1-15. doi:10.1017/s1462399403006562 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. del P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. doi:10.1186/s12951-018-0392-8 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Shamma, R. N., Sayed, R. H., Madry, H., EL Sayed, N. S., & Cucchiarini, M. (2022). Triblock copolymer bioinks in hydrogel three-dimensional printing for regenerative medicine: a focus on pluronic F127. Tissue Engineering Part B: Reviews, 28(2), 451-463. doi:10.1089/ten.teb.2021.0026 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Stasiuk, A. V., Fihurka, N. V., Tarnavchyk, I. T., Nosova, N. G., Pasetto, P., Varvarenko, S. M., & Samaryk, V. Y. (2022). Influence of structure and nature of pseudo-poly(amino acid)s on size and morphology of their particle in self-stabilized aqueous dispersions. Applied Nanoscience, 13(7), 5011-5019. doi:10.1007/s13204-022-02664-7 Crossref ● Google Scholar | ||||
| ||||
Stetsyshyn, Y., Raczkowska, J., Harhay, K., Awsiuk, K., Shymborska, Y., Nastyshyn, S., Ohar, H., Vasilyev, V., Ostapiv, D., Sharan, M., Sharan, O., Voronov, S., & Budkowski, A. (2020). Grafted polymer brush coatings for growth of cow granulosa cells and oocyte-cumulus cell complexes. Biointerphases, 15(3), 031006. doi:10.1116/6.0000183 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Tihauan, B.-M., Marinas, I.-C., Bleotu, C., Dolete, G., Onisei, T., Serbancea, F., Mateescu, C., & Rascol, M. R. (2021). Evaluation of cytotoxicity, nutritional and antioxidative status of lyophilized plant extracts used in dietary supplements. Romanian Biotechnological Letters, 26(2), 2396-2405. doi:10.25083/rbl/26.2/2396.2405 Crossref ● Google Scholar | ||||
| ||||
Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release, 73(2-3), 137-172. doi:10.1016/s0168-3659(01)00299-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yakoviv, M. V., Varvarenko, S. М., Samaryk, V. Ya., Nosovа, N. G., Fihurka, N. V., Maikovych, O. V., Dron, I. A., & Voronov, S. A. (2020). Peculiarities of the molecular weight distribution of fluorescein-containing copolyesters synthesized by the steglich reaction. Journal of Chemistry and Technologies, 28(1), 10-16. doi:10.15421/082002 Crossref ● Google Scholar | ||||
| ||||
Yakoviv, M. V., Nosova, N. G., Samaryk, V. Y., Pasetto, P., & Varvarenko, S. M. (2020). Study of physical interactions of fluorescein-containing amphiphilic copolyesters with albumin in aqueous dispersions. Applied Nanoscience, 10(8), 2655-2663. doi:10.1007/s13204-019-00987-6 Crossref ● Google Scholar | ||||
| ||||
Yakoviv, M., Fihurka, N., Nosova, N., Samaryk, V., Vasylyshyn, T., Hermanovych, S., Voronov, S., & Varvarenko, S. (2018). Researches of amphiphilic properties of copolyesters with chromophore groups. Chemistry & Chemical Technology, 12(3), 318-325. doi:10.23939/chcht12.03.318 Crossref ● Google Scholar | ||||
| ||||
Yang, B., Chen, Y., & Shi, J. (2020). Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angewandte Chemie International Edition, 59(24), 9693-9701. doi:10.1002/anie.202002306 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Yu, J., Qiu, H., Yin, S., Wang, H., & Li, Y. (2021). Polymeric drug delivery system based on pluronics for cancer treatment. Molecules, 26(12), 3610. doi:10.3390/molecules26123610 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vakilzadeh, H., Varshosaz, J., & Minaiyan, M. (2018). Pulmonary delivery of triptorelin loaded in pluronic based nanomicelles in rat model. Current Drug Delivery, 15(5), 630-640. doi:10.2174/1567201815666180209113735 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Varvarenko, S. M., Ferens, M. V., Samaryk, V. Ya., Nosova, N. G., Fihurka, N. V., Ostapiv, D. D., & Voronov, S. A. (2018). Synthesis of copolyesters of fluorescein and 2-(dodecanamino) pentanedionic acid via Steglich reaction. Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 5-15. (In Ukrainian) Google Scholar | ||||
| ||||
Varshosaz, J., Taymouri, S., Minaiyan, M., Rastegarnasab, F., & Baradaran, A. (2018). Development and in vitro/in vivo evaluation of HPMC/chitosan gel containing simvastatin loaded self-assembled nanomicelles as a potent wound healing agent. Drug Development and Industrial Pharmacy, 44(2), 276-288. doi:10.1080/03639045.2017.1391832 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wang, M., Chen, M., Niu, W., Winston, D. D., Cheng, W., & Lei, B. (2020). Injectable biodegradation-visual self-healing citrate hydrogel with high tissue penetration for microenvironment-responsive degradation and local tumor therapy. Biomaterials, 261, 120301. doi:10.1016/j.biomaterials.2020.120301 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wu, J., Gao, H., Shi, D., Yang, Y., Zhang, Y., & Zhu, W. (2020). Cationic gemini surfactants containing both amide and ester groups: synthesis, surface properties and antibacterial activity. Journal of Molecular Liquids, 299, 112248. doi:10.1016/j.molliq.2019.112248 Crossref ● Google Scholar | ||||
| ||||
Wu, Y., Zhou, D., Qi, Y., Xie, Z., Chen, X., Jing, X., & Huang, Y. (2015). Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Advances, 5(40), 31972-31983. doi:10.1039/c5ra03423j Crossref ● Google Scholar | ||||
| ||||
Udayakumar, G. P., Muthusamy, S., Selvaganesh, B., Sivarajasekar, N., Rambabu, K., Banat, F., Sivamani, S., Sivakumar, N., Hosseini-Bandegharaei, A., & Show, P. L. (2021). Biopolymers and composites: properties, characterization and their applications in food, medical and pharmaceutical industries. Journal of Environmental Chemical Engineering, 9(4), 105322. doi:10.1016/j.jece.2021.105322 Crossref ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Maria Yakoviv, Nataliia Nosova, Dmytro Ostapiv, Iryna Yaremchuk, Zoriana Nadashkevych, Volodymyr Samaryk, Serhii Varvarenko

This work is licensed under a Creative Commons Attribution 4.0 International License.