ENDOGENOUS AUXIN AND ABSCISIC ACID IN REGULATION OF EQUISETUM ARVENSE L. SPOROPHYTE GROWTH AND DEVELOPMENT

Lesya Voytenko, Inna Grigorchuk, Mykola Shcherbatiuk, Oleksandr Polishchuk, Olga Tsvilynyuk, Iryna Kosakivska


DOI: http://dx.doi.org/10.30970/sbi.1901.820

Abstract


Background. Phytohormones are natural regulators of plant growth and development, with their content and distribution varying across organs and tissues throughout the plant’s life cycle. Indole-3-acetic acid (IAA) regulates organogenesis, delays aging, and is involved in responses to environmental stresses. Abscisic acid (ABA), a stress hormone, controls transpiration, root growth, and plant aging. While extensive research exists on the role of IAA and ABA in the growth and morphogenesis of higher flowering plants, their roles in vascular spore-bearing plants remain poorly understood.
Materials and Methods. This study examined the dynamics and distribution of endogenous IAA and ABA in the organs of reproductive and sterile plants of the sporophyte generation of Equisetum arvense L. across nine ontogenetic phases, using HPLC-MS analysis.
Results. The study found that during the growth of shoots, rhizomes, and reproductive structures, the active form of IAA accumulates. As growth slows down, organs age, and spores mature, the content of endogenous ABA increases. Across all development phases, hormone levels were higher in the organs of sterile summer plants than in reproductive spring plants, except during the germination phase for IAA and the semi-open and open strobile phases for ABA. The accumulation of free ABA in strobiles during the massive spore shedding indicated its role in regulating spore maturation and strobile aging. Hormone levels in sterile shoots of varying heights increased following the formation and growth of second-order lateral branches. In spring rhizomes, IAA and ABA accumulation occurred during the open strobile phase, while in the rhizomes of summer plants, IAA (due to the bound form) and ABA (due to the free form) accumulated in 40- and 50-cm tall plants. Upon cessation of growth, IAA levels in the rhizomes of 70-cm tall plants decreased, while ABA levels remained unchanged.
Conclusions. Active growth processes in both above-ground and underground organs as well as the development of reproductive structures were associated with the accumulation of the active form of IAA. In contrast, the slowing of growth, aging of organs and maturation of spores were accompanied by increased ABA content. The study also revealed similarities in the patterns of IAA and ABA accumulation in the ontogeny of higher spore-bearing and flowering plants, contributing to the fundamental understanding of phytohormonal regulation of plant growth and development.


Keywords


Equisetum arvense L., abscisic acid, indole-3-acetic acid, sporophyte, growth, development

Full Text:

PDF

References


Babenko, L. M., Shcherbatiuk, M. M., & Kosakivska, I. V. (2015). Lipoxygenase activity and rhizomes ultrastructure of vegetative and generative shoots of Equisetum arvense L. Studia Biologica, 9(1), 153-162. doi:10.30970/sbi.0901.405 (In Ukrainian)
CrossrefGoogle Scholar

Bajguz, A., & Piotrowska-Niczyporuk, A. (2023). Biosynthetic pathways of hormones in plants. Metabolites, 13(8), 884. doi:10.3390/metabo13080884
CrossrefPubMedPMCGoogle Scholar

Cardoso, A. A., Gori, A., Da-Silva, C. J., & Brunetti, C. (2020). Abscisic acid biosynthesis and signaling in plants: key targets to improve water use efficiency and drought tolerance. Applied Sciences, 10(18), 6322. doi:10.3390/app10186322
CrossrefGoogle Scholar

Chen, K., Li G-J., Bressan, R. A., Song, C-P., Zhu, J-K., & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25-54. doi:10.1111/jipb.12899
CrossrefPubMedGoogle Scholar

Dathe, W., Miersch, O., & Schmidt, J. (1989). Occurrence of jasmonic acid, related compounds and abscisic acid in fertile and sterile fronds of three Equisetum species. Biochemie und Physiologie der Pflanze, 185(1-2), 83-92. doi:10.1016/S0015-3796(89)80162-3
CrossrefGoogle Scholar

Emenecker, R. J., & Strader, L. C. (2020). Auxin-abscisic acid interactions in plant growth and development. Biomolecules, 10(2), 281. doi:10.3390/biom10020281
CrossrefPubMedPMCGoogle Scholar

Fàbregas, N., & Fernie, A. R. (2022). The reliance of phytohormone biosynthesis on primary metabolite precursors. Journal of Plant Physiology, 268, 153589. doi:10.1016/j.jplph.2021.153589
CrossrefPubMedGoogle Scholar

Favre, P., van Schaik, E., Schorderet, M., Yerly, F., & Reinhardt, D. (2024). Regulation of tissue growth in plants - a mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. Front Plant Science, 15, 1285655. doi:10.3389/fpls.2024.1285655
CrossrefPubMedPMCGoogle Scholar

Gray, W. M., Östin, A., Sandberg, G., Romano, C. P., & Estelle, M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7197-7202. doi:10.1073/pnas.95.12.7197
CrossrefPubMedPMCGoogle Scholar

Hauke, R. L. (1990). Equisetaceae. In: K. U. Kramer & P. S. Green (Eds.), Pteridophytes and gymnosperms. The families and genera of vascular plants. (pp. 46-48). Springer, Berlin, Heidelberg. doi:10.1007/978-3-662-02604-5_12
CrossrefGoogle Scholar

Humplík, J. F., Bergougnoux, V., & Van Volkenburgh, E. (2017). To stimulate or inhibit? That is the question for the function of abscisic acid. Trends Plant Science, 22(10), 22(10), 830-841. doi: 10.1016/j.tplants.2017.07.009
CrossrefPubMedGoogle Scholar

Husby, C. (2013). Biology and functional ecology of Equisetum with emphasis on the giant horsetails. Botanical Review, 79(2), 147-177. doi:10.1007/s12229-012-9113-4
CrossrefGoogle Scholar

Kavi Kishor, P. B., Tiozon, R. N., Jr, Fernie, A. R., & Sreenivasulu, N. (2022). Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends in Plant Science, 27(12), 1283-1295. doi:10.1016/j.tplants.2022.08.013
CrossrefPubMedGoogle Scholar

Korver, R. A., Koevoets, I. T., & Testerink, C. (2018). Out of shape during stress: a key role for auxin. Trends in Plant Science, 23(9), 783-793. doi:10.1016/j.tplants.2018.05.011
CrossrefPubMedPMCGoogle Scholar

Kosakivska, I. V. (Ed.). (2019). Fitohormonalna systema ta strukturno-funktsionalni osoblyvosti paporotepodibnykh (Polypodiaphyta) [Phytohormonal system and structural-functional features of Pteridophytes (Polypodiophyta)]. Kyiv: Nash format. Retrieved from https://www.botany.kiev.ua/doc/kosakivska.pdf (In Ukrainian)

Ljung, K. (2013). Auxin metabolism and homeostasis during plant development. Development, 140(5), 943-950. doi:10.1242/dev.086363
CrossrefPubMedGoogle Scholar

Methodological recommendations for the determination of phytohormones. (1988). Kyiv: Institute of Botany of AS of USSR. (In Russian)

Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine. A nomenclatural checklist. Kyiv: National Academy of Sciences of Ukraine - M. G. Kholodny Institute of Botany.
Google Scholar

Mosyakin, S. L., & Tyshchenko, O. V. (2010). A pragmatic phylogenetic classification of vascular cryptogamic plants of the flora of Ukraine. Ukrainian Botanical Journal, 67(6), 802-817. (In Ukrainian)
Google Scholar

Perrot-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harbor Perspectives in Biology, 2(5), a001446. doi:10.1101/cshperspect.a001446
CrossrefPubMedPMCGoogle Scholar

Rowe, J. H., Topping, J. F., Liu, J., & Lindsey, K. (2016). Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. New Phytologist, 211(1), 225-239. doi:10.1111/nph.13882
CrossrefPubMedPMCGoogle Scholar

Sakata, Y., Komatsu, K., & Takezawa, D. (2014). ABA as a universal plant hormone. In: U. Lüttge, F. M. Cánovas, M-C. Risueño, & C. Leuschner (Eds.), Progress in botany (Vol. 75, pp. 57-96). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-3-642-38797-5_2
CrossrefGoogle Scholar

Sharma, R., & Sharma, P. (2023). Role of Abscisic acid in plant stress. In: A. Basharat & I. Javed (Eds.), New insights into phytohormones (pp. 1-27). doi:10.5772/intechopen.1002392
CrossrefGoogle Scholar

Shu, K., Liu, X., Xie, Q. & He, Z. (2016). Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant, 9(1), 34-45. doi:10.1016/j.molp.2015.08.010
CrossrefPubMedGoogle Scholar

Stakhiv, M., Shcherbatiuk, M., Voytenko, L., & Musatenko, L. I. (2013). Ultrastructural features of the internodes' surface in horsetail (Equisetum arvense L.). Modern Phytomorphology, 4, 355-358. (In Ukrainian)
Google Scholar

Sun, Y., Harpazi, B., Wijerathna-Yapa, A., Merilo, E., de Vries, J., Michaeli, D., Gal, M., Cuming, A. C., Kollist, H. & Mosquna, A. (2019). A ligand-independent origin of abscisic acid perception. Proceedings of the National Academy of Sciences of the United States of America, 116(49), 24892-24899. doi:10.1073/pnas.1914480116
CrossrefPubMedPMCGoogle Scholar

Tymchenko, I., Minarchenko, V., Futorna, O., & Dvirna, T. (2019). The morphological features of species of the genus of Equisetum L. related to the pharmacopoeial Equisetum arvense L. Ecological Sciences, 4(27), 171-180. doi:10.32846/2306-9716-2019-4-27-26 (In Ukrainian)
CrossrefGoogle Scholar

Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., Kumar, V., Verma, R., Upadhyay, R. G., Pandey, M., & Sharma, S. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Frontiers in Plant Science, 8, 161. doi:10.3389/fpls.2017.00161
CrossrefGoogle Scholar

Voytenko, L. V. (2021). Endogenous auxin and abscisic acid in the organs of the Equisetum hyemale L. sporophyte in ontogenesis. In: Achievements of Ukraine and the EU in ecology, biology, chemistry, geography and agricultural sciences (pp. 131-149). Riga, Latvia: Baltija Publishing. doi:10.30525/978-9934-26-086-5-7
CrossrefGoogle Scholar

Voytenko, L. V., Shcherbatyuk M. M. & Kosakivska, I. V. (2016). Structural and functional characteristics of Equisetum arvense L. in ontogenesis. The Bulletin of Kharkiv National Agrarian University. Series Biology, 2(38), 46-68. Retrieved from https://repo.btu.kharkov.ua//handle/123456789/7406 (In Ukrainian)
Google Scholar

Wakeman, А., & Bennett, T. (2023). Auxins and grass shoot architecture: how the most important hormone makes the most important plants. Journal of Experimental Botany, 74(22), 6975-6988. doi:10.1093/jxb/erad28
CrossrefPubMedPMCGoogle Scholar

Weijers, D., & Wagner, D. (2016). Transcriptional responses to the auxin hormone. Annual Review of Plant Biology, 67(1), 539-574. doi:10.1146/annurev-arplant-043015-112122
CrossrefPubMedGoogle Scholar

Yang, X., Jia, Z., Pu, Q., Tian, Y., Zhu, F., & Liu, Y. (2022). ABA mediates plant development and abiotic stress via alternative splicing. International Journal of Molecular Sciences, 23(7), 3796. doi:10.3390/ijms23073796
CrossrefPubMedPMCGoogle Scholar

Yoshida, T., Obata, T., Feil, R., Lunn, J. E., Fujita, Y., Yamaguchi-Shinozaki, K., & Fernie, A. R. (2019). The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under nonstress conditions. The Plant Cell, 31(1), 84-105. doi:10.1105/tpc.18.00766
CrossrefPubMedPMCGoogle Scholar

Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of auxin in the growth, development, and stress tolerance of horticultural plants. Cells, 11(17), 2761. doi:10.3390/cells11172761
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Lesya Voytenko, Inna Grigorchuk, Mykola Shcherbatiuk, Oleksandr Polishchuk, Olga Tsvilynyuk, Iryna Kosakivska

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.