EFFECT OF COMBINED ARGINASE AND NITRIC OXIDE DONOR TREATMENT ON NORMAL AND LEUKEMIC CELLS IN VITRO

O. I. Chen, M. L. Barska, L. S. Lyniv, N. I. Igumentseva, O. I. Vovk, N. O. Sybirna, O. V. Stasyk


DOI: http://dx.doi.org/10.30970/sbi.1001.470

Abstract


Arginine deprivation has been recently suggested as a therapeutic approach against difficult to cure blood cancers. Herein, we investigated for the first time the combined effect of exogenous nitric oxide (NO) donor and recombinant human arginase (rhARG) as arginine-depleting agent on viability of several human leukemic cell lines and normal peripheral blood lymphocytes (PBL). We found that exogenous NO donor, sodium nitroprusside (SNP), at physiologically compatible dose did not counteract but augmented rhARG-mediated pro-apoptotic effect of arginine depletion in leukemic cells but not in resting lymphocytes. Thus, we hypothesize that NO deficiency resulting from arginine deprivation is not the primary cause of high leukemic cells sensitivity to the action of rhARG. The results of this study further support the notion that not arginine catabolism but other cell response mechanisms must be involved in determining cell fate upon arginine restriction. SNP or alternative NO donors can be proposed as components of metabolic anti-leukemia therapy based on arginine deprivation.


Keywords


recombinant arginase, nitric oxide, sodium nitroprusside, peripheral blood lymphocytes, leukemic cells

Full Text:

PDF

References


1. Ascierto P.A., Scala S., Castello G. et al. Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J. Clin. Oncol, 2005; 23: 7660-7668.
https://doi.org/10.1200/JCO.2005.02.0933
PMid:16234528

2. Bobak Y.P., Vynnytska B.O., Kurlishchuk Y.V. et al. Cancer cell sensitivity to arginine deprivation in vitro is not determined by endogenous levels of arginine metabolic enzymes. Cell Biol. Int, 2010; 34:1085-89.
https://doi.org/10.1042/CBI20100451
PMid:20653567

3. Burke A.J., Sullivan F.J., Giles F.J., Glynn S.A. The yin and yang of nitric oxide in cancer progression. Carcinogenesis, 2013; 34(3): 503-512.
https://doi.org/10.1093/carcin/bgt034
PMid:23354310

4. Chen O., Kavalets B., Barska M. et al. Effect of combinational arginase and canavanine treatment on normal human peripheral blood lymphocytes in vitro. Curr. Issues Pharm. Med. Sci, 2013; 26(4): 385-389.
https://doi.org/10.12923/j.2084-980X/26.4/a.07

5. Chen O.I., Lyniv L.S., Igumentseva N.I. et al. Effect of nitric oxide donor on viability of human leukemic cells upon arginine deprivation. Studia Biologica, 2011; 5(2): 17-28.
https://doi.org/10.30970/sbi.0502.155

6. Delage B., Fennell D.A., Nicholson L. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer, 2010; 126: 2762-2772.
https://doi.org/10.1002/ijc.25202
PMid:20104527

7. Dillon B.J., Holtsberg F.W., Ensor C.M. et al. Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med. Sci Monit, 2002; 8(7): 248-253.

8. Feun L., You M., Wu C.J. Arginine deprivation as a targeted therapy for cancer. Curr. Pharm. Des, 2008; 14: 1049-1057.
https://doi.org/10.2174/138161208784246199
PMid:18473854 PMCid:PMC3096551

9. Fujiwara N., Osanai T., Kamada T. et al. Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation, 2000; 101: 856-861.
https://doi.org/10.1161/01.CIR.101.8.856
PMid:10694524

10. Fukumura D., Kashiwagi S., Jain R.K. The role of nitric oxide in tumor progression. Nature Reviews Cancer, 2006; 6: 521-534.
https://doi.org/10.1038/nrc1910
PMid:16794635

11. Glazer E.S., Stone E.M., Zhu C. et al. Phase II study of pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J. Clin. Oncol, 2010; 28(13): 2220-2226.
https://doi.org/10.1200/JCO.2009.26.7765
PMid:20351325

12. Hottinger D.G., Beebe D.S., Kozhimannil T. et al. Sodium nitroprusside in 2014: A clinical concepts review. J. Anaesthesiol. Clin. Pharmacol, 2014; 30(4): 462-471.
https://doi.org/10.4103/0970-9185.142799
PMid:25425768 PMCid:PMC4234779

13. Ivankovich A.D., Miletich D.J., Tinker J.H. Sodium nitroprusside: metabolism and general considerations. Int. Anesthesiol. Clin, 1978; 16: 1-29.
https://doi.org/10.1097/00004311-197816020-00003
PMid:357297

14. Koh D.W., Dawson T.M., Dawson V.L. Mediation of cell death by poly(ADP-ribose) polyme­rase-1. Pharmacol Res, 2005; 52(1): 5-14.
https://doi.org/10.1016/j.phrs.2005.02.011
PMid:15911329

15. Lockwood A., Patka J., Rabinovich M. et al. Sodium nitroprusside-associated cyanide toxicity in adult patients - fact or fiction? A critical review of the evidence and clinical relevance. Open Access Journal of Clinical Trials, 2010; 2: 133-148.
https://doi.org/10.2147/OAJCT.S7573

16. Loh M.L., Mullighan C.G. Advances in the genetics of high-risk childhood B-progenitor acute lymphoblastic leukemia and juvenile myelomonocytic leukemia: implications for therapy. Clin. Cancer Res, 2012; 18: 2754-2768.
https://doi.org/10.1158/1078-0432.CCR-11-1936
PMid:22589484

17. Mauldin J.P., Zeinali I., Kleypas K. et al. Recombinant human arginase toxicity in mice is reduced by citrulline supplementation. Transl. Oncol, 2012, 5(1): 26-31.
https://doi.org/10.1593/tlo.11262
PMid:22348173 PMCid:PMC3281408

18. Morris S.M. Arginine: beyond protein. Am. J. Clin. Nutr, 2006; 83 (Suppl): 508-512.
https://doi.org/10.1093/ajcn/83.2.508S
PMid:16470022

19. Peterson G.L. A simplification of the protein assay method of Lowry et al. which is more gene­rally applicable. Anal. Biochem, 1977; 83: 346-356.
https://doi.org/10.1016/0003-2697(77)90043-4

20. Phillips M.M., Sheaff M.T., Szlosarek P.W. Targeting arginine-dependent cancers with arginine-degrading enzymes: opportunities and challenges. Cancer Res. Treat, 2013; 45(4): 251-262.
https://doi.org/10.4143/crt.2013.45.4.251
PMid:24453997 PMCid:PMC3893322

21. Pieters R., Appel I., Kuehnel H.J. et al. Pharmacokinetics, pharmacodynamics, efficacy, and safety of a new recombinant asparaginase preparation in children with previously untreated acute lymphoblastic leukemia: a randomized phase 2 clinical trial. Blood, 2008; 112: 4832-4838.
https://doi.org/10.1182/blood-2008-04-149443
PMid:18805963

22. Qiu F., Huang J., Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Letters, 2015; 364(1): 1-7.
https://doi.org/10.1016/j.canlet.2015.04.020
PMid:25917076

23. Rytting M.E. Role of L-asparaginase in acute lymphoblastic leukemia: focus on adult patients. Blood and Lymphatic Cancer: Targets and Therapy, 2012; 2: 117-124.
https://doi.org/10.2147/BLCTT.S18699

24. Stasyk O.V., Boretsky Yu. R., Gonchar M.V., Sibirny A.A. Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics. Cell Biol. Int, 2015; 39: 246-252.
https://doi.org/10.1002/cbin.10383
PMid:25231409

25. Tanios R., Bekdash A., Kassab E. et al. Human recombinant arginase I (Co)-PEG5000 [HuArgI(Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human acute myeloid leukemia cells. Leukemia Res, 2013; 37(11): 1565-71.
https://doi.org/10.1016/j.leukres.2013.08.007
PMid:24018014

26. Thomas J.B., Holtsberg F.W., Ensor C.M. et al. Enzymic degradation of plasma arginine using arginine deiminase inhibits nitric oxide production and protects mice from the lethal effects of tumour necrosis factor a and endotoxin. Biochem. J, 2002; 363: 581-587.
https://doi.org/10.1042/bj3630581
PMid:11964159 PMCid:PMC1222511

27. Villalobo A. Nitric oxide and cell proliferation. FEBS, 2006; 273: 2329-2344.
https://doi.org/10.1111/j.1742-4658.2006.05250.x
PMid:16704409

28. Vynnytska B.O., Mayevska O.M., Kurlishchuk Y.V. et al. Canavanine augments proapoptotic effects of arginine deprivation in cultured human cancer cells. Anticancer Drugs, 2011; 22(2): 148-57.
https://doi.org/10.1097/CAD.0b013e32833e0334
PMid:20717004

29. Wang P.G., Xian M., Tang X. et al. Nitric oxide donors: chemical activities and biological applications. Chem. Rev, 2002; 102: 1091-1134.
https://doi.org/10.1021/cr000040l
PMid:11942788

30. Wells J.W., Evans C.H., Scott M.C. et al. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation. PLOS ONE, 2013; 8(1): 1-9.
https://doi.org/10.1371/journal.pone.0054464
PMid:23365669 PMCid:PMC3554772

31. Yau T., Cheng P.N., Chan P. et al. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest. New Drugs, 2013; 31: 99-107.
https://doi.org/10.1007/s10637-012-9807-9
PMid:22426640 PMCid:PMC3553413

32. Yoon J.K., Frankel A.E., Feun L.G. et al. Arginine deprivation therapy for malignant melanoma. Clin. Pharmacol, 2013; 5: 11-19.
https://doi.org/10.2147/CPAA.S37350
PMid:23293541 PMCid:PMC3534294


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.