RELATION OF SOYBEAN PRODUCTIVITY TO THE FUNCTIONING OF THE SYMBIOTIC AND PHOTOSYNTHETIC APPARATUSES

Nadiya Vorobey, Kateryna Kukol, Petro Pukhtaievych, Sergii Kots, Dmytro Kiriziy


DOI: http://dx.doi.org/10.30970/sbi.1804.796

Abstract


Background. Increasing the yield of soybean necessitates the maintenance of a high protein level in seeds, and therefore the process of fixing atmospheric N2. Seed inoculation with soybean nitrogen-fixing bacteria is known to improve N2-fixation and soybean grain yield. At the same time, the introduction of new nodule bacteria strains into preparations for soybean inoculation requires the study of their influence on the main interconnected physiological processes that form the basis of leguminous plants productivity – N2-fixation and photosynthesis. The aim of the work was to study the relationship of vegetative growth and grain productivity of soybean inoculated with new nodule bacteria Bradyrhizobium japonicum strains of different functional activity with the plants’ symbiotic and photosynthetic apparatuses functioning.
Materials and Methods. The research was carried out on symbiotic systems created with soybean plants (Glycine max (L.) Merr.) of the Almaz variety and nodule bacteria B. japonicum strains: analytically selected PC09, and recombinant strains B157, B201, D45, D52 (pSUP5011::Tn5mob) and C30 (pSUP2021::Tn5) from the N2-fixing microorganisms museum collection of the Institute of Plant Physiology and Genetics NAS of Ukraine. Research methods – microbiological, biochemical and physiological, statistical analysis.
Results. It was found that the N2-fixing activity (NFA) of nodules formed by B. japoni­cum PC09, D45, D52, B157 and B201 strains at the stage of 3 true leaves exceeded the NFA of nodules formed by Tn5-mutant C30 by 1.6–4.0 times, and at the stage of budding–beginning of flowering – by 4.2–6.2 times. Highly active strains also differed from each other in NFA, although to a lesser extent than with strain C30. On the basis of a comparative analysis of the physiological indices of soybean inoculated with B. japonicum strains of different activity, close positive linear correlations were found between NFA, photosynthetic rate, and the biological and grain productivity of plants.
Conclusions. The results obtained indicate that the higher the nodulating and NFA of rhizobia in the symbiotic system soybean–Bradyrhizobium japonicum, the higher the functional activity of photosynthetic apparatus formed by plants. This provides a more complete genetic potential release of soybean crop productivity.


Keywords


Glycine max (L.) Merr., Bradyrhizobium japonicum, symbiosis, nodulation, N2-fixing activity, photosynthesis, productivity

Full Text:

PDF

References


Busch, F. A., Ainsworth, E. A., Amtmann, A., Cavanagh, A. P., Driever, S. M., Ferguson, J. N., Kromdijk, J., Lawson, T., Leakey, A. D. B., Matthews, J. S. A., Meacham-Hensold, K., Vath, R. L., Vialet-Chabrand, S., Walker, B. J., & Papanatsiou, M. (2024). A guide to photosynthetic gas exchange measurements: fundamental principles, best practice and potential pitfalls. Plant, Cell & Environment, 47(9), 3344-3364. doi:10.1111/pce.14815
CrossrefPubMedGoogle Scholar

Ciampitti, I. A., & Salvagiotti, F. (2018). New insights into soybean biological nitrogen fixation. Agronomy Journal, 110, 1185-1196. doi:10.2134/agronj2017.06.0348
CrossrefGoogle Scholar

Feller, U., Anders, I., & Mae, T. (2008). Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 59(7), 1615-1624. doi:10.1093/jxb/erm242
CrossrefPubMedGoogle Scholar

Fischer, A. M., Dubbs, W. E., Baker, R. A., Fuller, M. A., Stephenson, L. C., & Grimes, H. D. (1999). Protein dynamics, activity and cellular localization of soybean lipoxygenases indicate distinct functional roles for individual isoforms. The Plant Journal, 19(5), 543-554. doi:10.1046/j.1365-313X.1999.00550.x
CrossrefPubMedGoogle Scholar

Glanz-Idan, N., Tarkowski, P., Turečková, V. & Wolf, S. (2020). Root-shoot communication in tomato plants: cytokinin as a signal molecule modulating leaf photosynthetic activity. Journal of Experimental Botany, 71(1), 247-257. doi:10.1093/jxb/erz399
CrossrefPubMedPMCGoogle Scholar

Halwani, M., Reckling, M., Egamberdieva, D., Omari, R. A., Bellingrath-Kimura, S. D., Bachinger, J., & Bloch, R. (2021). Soybean nodulation response to cropping interval and inoculation in European cropping systems. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.638452
CrossrefPubMedPMCGoogle Scholar

Hamawi, M., Rosanti, E., & Rahma, R. A. A. (2023). Total chlorophyll and root nodules at various ages of soybean plants (Glycine max L.) in the wet-dry season. Earth and Environmental Science, 1241, 012008. doi:10.1088/1755-1315/1241/1/012008
CrossrefGoogle Scholar

Hanhur, V., Marenych, M., Yeremko, L., Yurchenko, S., Hordieieva, O., & Korotkova, I. (2020). The effect of soil tillage on symbiotic activity of soybean crops. Bulgarian Journal of Agricultural Science, 26(2), 365-374.
Google Scholar

Hardy, R. W. F., Holsten, R. D., Jackson, E. K., & Burns, R. C. (1968). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology, 42(8), 1185-1207. doi:10.1104/pp.43.8.1185
CrossrefPubMedPMCGoogle Scholar

Havé, M., Marmagne, A., Chardon, F., & Masclaux-Daubresse, C. (2017). Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. Journal of Experimental Botany, 68(10), 2513-2529. doi:10.1093/jxb/erw365
CrossrefPubMedGoogle Scholar

Kiriziy, D., Kots, S., Rybachenko, L., & Pukhtaievych, P. (2022). Inoculation of soybean seeds by rhizobia with nanometal carboxylates reduces the negative effect of drought on N2 and CO2 assimilation. Plant, Soil and Environment, 68(11), 510-515. doi:10.17221/287/2022-pse
CrossrefGoogle Scholar

Kots, S. Ya. (2021). Biological nitrogen fixation: achievements and prospects. Plant Physiology and Genetics, 53(2), 128-159. doi:10.15407/frg2021.02.128 (In Ukrainian)
CrossrefGoogle Scholar

Luo, X., Keenan, T. F., Chen, J. M., Croft, H., Colin Prentice, I., Smith, N. G., Walker, A. P., Wang, H., Wang, R., Xu, C., & Zhang, Y. (2021). Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications, 12, 4866. doi:10.1038/s41467-021-25163-9
CrossrefPubMedPMCGoogle Scholar

Mergaert, P., Kereszt, A., & Kondorosi, E. (2020). Gene expression in nitrogen-fixing symbiotic nodule cells in Medicago truncatula and other nodulating plants. The Plant Cell, 32(1), 42-68. doi:10.1105/tpc.19.00494
CrossrefPubMedPMCGoogle Scholar

Moretti, L. G., Lazarini, E., Bossolani, J. W., Parente, T. L., Caioni, S., Araujo, R. S., & Hungria, M. (2018). Can additional inoculations increase soybean nodulation and grain yield? Agronomy Journal, 110(4), 1631-1631. doi.org/10.2134/agronj2017.09.0540er
CrossrefGoogle Scholar

Nakei, M. D., Venkataramana, P. B., & Ndakidemi, P. A. (2022). Soybean-nodulating rhizobia: ecology, characterization, diversity, and growth promoting functions. Frontiers in Sustainable Food Systems, 6. doi:10.3389/fsufs.2022.824444
CrossrefGoogle Scholar

Ohyama, T., Tewari, K., Ishikawa, S., Tanaka, K., Kamiyama, S., Ono, Y., Hatano, S., Ohtake, N., Sueyoshi, K., Hasegawa, H., Sato, T., Tanabata, S., Nagumo, Y., Fujita, Y., & Takahashi, Y. (2017). Role of nitrogen on growth and seed yield of soybean and a new fertilization and technique to promote nitrogen fixation and seed yield. In: M. Kasai (Ed.), Soybean - the basis of yield, biomass and productivity (pp. 153-185). InTech. doi:10.5772/66743
CrossrefGoogle Scholar

Omari, R. A., Yuan, K., Anh, K. T., Reckling, M., Halwani, M., Egamberdieva, D., Ohkama-Ohtsu, N., & Bellingrath-Kimura, S. D. (2022). Enhanced soybean productivity by inoculation with indigenous Bradyrhizobium strains in agroecological conditions of Northeast Germany. Frontiers in Plant Science, 12, 707080. doi:10.3389/fpls.2021.707080
CrossrefPubMedPMCGoogle Scholar

Sakoda, K., Suzuki, S., Fukayama, H., Tanaka, Y., & Shiraiwa, T. (2019). Activation state of Rubisco decreases with the nitrogen accumulation during the reproductive stage in soybean [Glycine max (L.) Merr.]. Photosynthetica, 57(1), 231-236. doi:10.32615/ps.2019.002
CrossrefGoogle Scholar

Tellesa, T. S., Nogueirab M. A., Hungriab, M. (2023). Economic value of biological lnitrogen fixation in soybean crops in Brazil. Environmental Technology & Innovation, 31, 103158. doi:10.1016/j.eti.2023.103158
CrossrefGoogle Scholar

Thilakarathna, M. S., & Raizada, M. N. (2017). A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biology and Biochemistry, 105, 177-196. doi:10.1016/j.soilbio.2016.11.022
CrossrefGoogle Scholar

Umburanas, R., Kawakami, J., Ainsworth, E., Favarin, J., Anderle, L., Dourado-Neto, D., & Reichardt, K. (2022). Changes in soybean cultivars released over the past 50 years in southern Brazil. Scientific Reports, 12(1), 508. doi:10.1038/s41598-021-04043-8
CrossrefPubMedPMCGoogle Scholar

Vanlauwe, B., Hungria, M., Kanampiu, F., & Giller, K. E. (2019). The role of legumes in the sustainable intensification of African smallholder agriculture: lessons learnt and challenges for the future. Agriculture, Ecosystems & Environment, 284, 106583. doi:10.1016/j.agee.2019.106583
CrossrefPubMedPMCGoogle Scholar

Vogel, J. T., Liu, W., Olhoft, P., Crafts-Brandner, S. J., Pennycooke, J. C., & Christiansen, N. (2021). Soybean yield formation physiology - a foundation for precision breeding based improvement. Frontiers in Plant Science, 12(7), 19706. doi:10.3389/fpls.2021.719706
CrossrefPubMedPMCGoogle Scholar

Vorobey, N. A., Kots, S. Ya., & Mamenko, P. M. (2013). Realization of nitrogen fixation potential of Tn5-mutants Bradyrhizobium japonicum in symbiosis with soybean plants. Biotechnologia Acta, 6(5), 122-130. doi:10.15407/biotech6.05.122 (In Ukrainian)
CrossrefGoogle Scholar

Vorobey, N., Kukol, K., Pukhtaievych, P., & Kots, S. (2021). Influence of carmoisine on the viability of Bradyrhizobium japonicum in vitro and physiological indices of soybean under symbiosis conditions. Journal of Central European Agriculture, 22(4), 735-747. doi:10.5513/jcea01/22.4.3157
CrossrefGoogle Scholar

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology, 144(3), 307-313. doi:10.1016/s0176-1617(11)81192-2
CrossrefGoogle Scholar

Yuan, K., Reckling, M., Ramirez, M. D. A., Djedidi, S., Fukuhara, I., Ohyama, T., Yokoyama, T., Bellingrath-Kimura, S. D., Halwani, M., Egamberdieva, D., & Ohkama-Ohtsu, N. (2020). Characterization of rhizobia for the improvement of soybean cultivation at cold conditions in Central Europe. Microbes and Environments, 35(1), ME19124. doi:10.1264/jsme2.ME19124
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nadiya Vorobey, Kateryna Kukol, Petro Pukhtaievych, Sergii Kots, Dmytro Kiriziy

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.