RELATION OF SOYBEAN PRODUCTIVITY TO THE FUNCTIONING OF THE SYMBIOTIC AND PHOTOSYNTHETIC APPARATUSES
DOI: http://dx.doi.org/10.30970/sbi.1804.796
Abstract
Background. Increasing the yield of soybean necessitates the maintenance of a high protein level in seeds, and therefore the process of fixing atmospheric N2. Seed inoculation with soybean nitrogen-fixing bacteria is known to improve N2-fixation and soybean grain yield. At the same time, the introduction of new nodule bacteria strains into preparations for soybean inoculation requires the study of their influence on the main interconnected physiological processes that form the basis of leguminous plants productivity – N2-fixation and photosynthesis. The aim of the work was to study the relationship of vegetative growth and grain productivity of soybean inoculated with new nodule bacteria Bradyrhizobium japonicum strains of different functional activity with the plants’ symbiotic and photosynthetic apparatuses functioning.
Materials and Methods. The research was carried out on symbiotic systems created with soybean plants (Glycine max (L.) Merr.) of the Almaz variety and nodule bacteria B. japonicum strains: analytically selected PC09, and recombinant strains B157, B201, D45, D52 (pSUP5011::Tn5mob) and C30 (pSUP2021::Tn5) from the N2-fixing microorganisms museum collection of the Institute of Plant Physiology and Genetics NAS of Ukraine. Research methods – microbiological, biochemical and physiological, statistical analysis.
Results. It was found that the N2-fixing activity (NFA) of nodules formed by B. japonicum PC09, D45, D52, B157 and B201 strains at the stage of 3 true leaves exceeded the NFA of nodules formed by Tn5-mutant C30 by 1.6–4.0 times, and at the stage of budding–beginning of flowering – by 4.2–6.2 times. Highly active strains also differed from each other in NFA, although to a lesser extent than with strain C30. On the basis of a comparative analysis of the physiological indices of soybean inoculated with B. japonicum strains of different activity, close positive linear correlations were found between NFA, photosynthetic rate, and the biological and grain productivity of plants.
Conclusions. The results obtained indicate that the higher the nodulating and NFA of rhizobia in the symbiotic system soybean–Bradyrhizobium japonicum, the higher the functional activity of photosynthetic apparatus formed by plants. This provides a more complete genetic potential release of soybean crop productivity.
Keywords
Full Text:
PDFReferences
Busch, F. A., Ainsworth, E. A., Amtmann, A., Cavanagh, A. P., Driever, S. M., Ferguson, J. N., Kromdijk, J., Lawson, T., Leakey, A. D. B., Matthews, J. S. A., Meacham-Hensold, K., Vath, R. L., Vialet-Chabrand, S., Walker, B. J., & Papanatsiou, M. (2024). A guide to photosynthetic gas exchange measurements: fundamental principles, best practice and potential pitfalls. Plant, Cell & Environment, 47(9), 3344-3364. doi:10.1111/pce.14815 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ciampitti, I. A., & Salvagiotti, F. (2018). New insights into soybean biological nitrogen fixation. Agronomy Journal, 110, 1185-1196. doi:10.2134/agronj2017.06.0348 Crossref ● Google Scholar | ||||
| ||||
Feller, U., Anders, I., & Mae, T. (2008). Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of Experimental Botany, 59(7), 1615-1624. doi:10.1093/jxb/erm242 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Fischer, A. M., Dubbs, W. E., Baker, R. A., Fuller, M. A., Stephenson, L. C., & Grimes, H. D. (1999). Protein dynamics, activity and cellular localization of soybean lipoxygenases indicate distinct functional roles for individual isoforms. The Plant Journal, 19(5), 543-554. doi:10.1046/j.1365-313X.1999.00550.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Glanz-Idan, N., Tarkowski, P., Turečková, V. & Wolf, S. (2020). Root-shoot communication in tomato plants: cytokinin as a signal molecule modulating leaf photosynthetic activity. Journal of Experimental Botany, 71(1), 247-257. doi:10.1093/jxb/erz399 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Halwani, M., Reckling, M., Egamberdieva, D., Omari, R. A., Bellingrath-Kimura, S. D., Bachinger, J., & Bloch, R. (2021). Soybean nodulation response to cropping interval and inoculation in European cropping systems. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.638452 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hamawi, M., Rosanti, E., & Rahma, R. A. A. (2023). Total chlorophyll and root nodules at various ages of soybean plants (Glycine max L.) in the wet-dry season. Earth and Environmental Science, 1241, 012008. doi:10.1088/1755-1315/1241/1/012008 Crossref ● Google Scholar | ||||
| ||||
Hanhur, V., Marenych, M., Yeremko, L., Yurchenko, S., Hordieieva, O., & Korotkova, I. (2020). The effect of soil tillage on symbiotic activity of soybean crops. Bulgarian Journal of Agricultural Science, 26(2), 365-374. Google Scholar | ||||
| ||||
Hardy, R. W. F., Holsten, R. D., Jackson, E. K., & Burns, R. C. (1968). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiology, 42(8), 1185-1207. doi:10.1104/pp.43.8.1185 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Havé, M., Marmagne, A., Chardon, F., & Masclaux-Daubresse, C. (2017). Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. Journal of Experimental Botany, 68(10), 2513-2529. doi:10.1093/jxb/erw365 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kiriziy, D., Kots, S., Rybachenko, L., & Pukhtaievych, P. (2022). Inoculation of soybean seeds by rhizobia with nanometal carboxylates reduces the negative effect of drought on N2 and CO2 assimilation. Plant, Soil and Environment, 68(11), 510-515. doi:10.17221/287/2022-pse Crossref ● Google Scholar | ||||
| ||||
Kots, S. Ya. (2021). Biological nitrogen fixation: achievements and prospects. Plant Physiology and Genetics, 53(2), 128-159. doi:10.15407/frg2021.02.128 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Luo, X., Keenan, T. F., Chen, J. M., Croft, H., Colin Prentice, I., Smith, N. G., Walker, A. P., Wang, H., Wang, R., Xu, C., & Zhang, Y. (2021). Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nature Communications, 12, 4866. doi:10.1038/s41467-021-25163-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Mergaert, P., Kereszt, A., & Kondorosi, E. (2020). Gene expression in nitrogen-fixing symbiotic nodule cells in Medicago truncatula and other nodulating plants. The Plant Cell, 32(1), 42-68. doi:10.1105/tpc.19.00494 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Moretti, L. G., Lazarini, E., Bossolani, J. W., Parente, T. L., Caioni, S., Araujo, R. S., & Hungria, M. (2018). Can additional inoculations increase soybean nodulation and grain yield? Agronomy Journal, 110(4), 1631-1631. doi.org/10.2134/agronj2017.09.0540er Crossref ● Google Scholar | ||||
| ||||
Nakei, M. D., Venkataramana, P. B., & Ndakidemi, P. A. (2022). Soybean-nodulating rhizobia: ecology, characterization, diversity, and growth promoting functions. Frontiers in Sustainable Food Systems, 6. doi:10.3389/fsufs.2022.824444 Crossref ● Google Scholar | ||||
| ||||
Ohyama, T., Tewari, K., Ishikawa, S., Tanaka, K., Kamiyama, S., Ono, Y., Hatano, S., Ohtake, N., Sueyoshi, K., Hasegawa, H., Sato, T., Tanabata, S., Nagumo, Y., Fujita, Y., & Takahashi, Y. (2017). Role of nitrogen on growth and seed yield of soybean and a new fertilization and technique to promote nitrogen fixation and seed yield. In: M. Kasai (Ed.), Soybean - the basis of yield, biomass and productivity (pp. 153-185). InTech. doi:10.5772/66743 Crossref ● Google Scholar | ||||
| ||||
Omari, R. A., Yuan, K., Anh, K. T., Reckling, M., Halwani, M., Egamberdieva, D., Ohkama-Ohtsu, N., & Bellingrath-Kimura, S. D. (2022). Enhanced soybean productivity by inoculation with indigenous Bradyrhizobium strains in agroecological conditions of Northeast Germany. Frontiers in Plant Science, 12, 707080. doi:10.3389/fpls.2021.707080 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sakoda, K., Suzuki, S., Fukayama, H., Tanaka, Y., & Shiraiwa, T. (2019). Activation state of Rubisco decreases with the nitrogen accumulation during the reproductive stage in soybean [Glycine max (L.) Merr.]. Photosynthetica, 57(1), 231-236. doi:10.32615/ps.2019.002 Crossref ● Google Scholar | ||||
| ||||
Tellesa, T. S., Nogueirab M. A., Hungriab, M. (2023). Economic value of biological lnitrogen fixation in soybean crops in Brazil. Environmental Technology & Innovation, 31, 103158. doi:10.1016/j.eti.2023.103158 Crossref ● Google Scholar | ||||
| ||||
Thilakarathna, M. S., & Raizada, M. N. (2017). A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biology and Biochemistry, 105, 177-196. doi:10.1016/j.soilbio.2016.11.022 Crossref ● Google Scholar | ||||
| ||||
Umburanas, R., Kawakami, J., Ainsworth, E., Favarin, J., Anderle, L., Dourado-Neto, D., & Reichardt, K. (2022). Changes in soybean cultivars released over the past 50 years in southern Brazil. Scientific Reports, 12(1), 508. doi:10.1038/s41598-021-04043-8 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vanlauwe, B., Hungria, M., Kanampiu, F., & Giller, K. E. (2019). The role of legumes in the sustainable intensification of African smallholder agriculture: lessons learnt and challenges for the future. Agriculture, Ecosystems & Environment, 284, 106583. doi:10.1016/j.agee.2019.106583 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vogel, J. T., Liu, W., Olhoft, P., Crafts-Brandner, S. J., Pennycooke, J. C., & Christiansen, N. (2021). Soybean yield formation physiology - a foundation for precision breeding based improvement. Frontiers in Plant Science, 12(7), 19706. doi:10.3389/fpls.2021.719706 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vorobey, N. A., Kots, S. Ya., & Mamenko, P. M. (2013). Realization of nitrogen fixation potential of Tn5-mutants Bradyrhizobium japonicum in symbiosis with soybean plants. Biotechnologia Acta, 6(5), 122-130. doi:10.15407/biotech6.05.122 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Vorobey, N., Kukol, K., Pukhtaievych, P., & Kots, S. (2021). Influence of carmoisine on the viability of Bradyrhizobium japonicum in vitro and physiological indices of soybean under symbiosis conditions. Journal of Central European Agriculture, 22(4), 735-747. doi:10.5513/jcea01/22.4.3157 Crossref ● Google Scholar | ||||
| ||||
Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology, 144(3), 307-313. doi:10.1016/s0176-1617(11)81192-2 Crossref ● Google Scholar | ||||
| ||||
Yuan, K., Reckling, M., Ramirez, M. D. A., Djedidi, S., Fukuhara, I., Ohyama, T., Yokoyama, T., Bellingrath-Kimura, S. D., Halwani, M., Egamberdieva, D., & Ohkama-Ohtsu, N. (2020). Characterization of rhizobia for the improvement of soybean cultivation at cold conditions in Central Europe. Microbes and Environments, 35(1), ME19124. doi:10.1264/jsme2.ME19124 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Nadiya Vorobey, Kateryna Kukol, Petro Pukhtaievych, Sergii Kots, Dmytro Kiriziy
This work is licensed under a Creative Commons Attribution 4.0 International License.