EVALUATION OF FOLLICLE-STIMULATING HORMONE VERSUS ANTI-MÜLLERIAN HORMONE IN POLYCYSTIC OVARY SYNDROME: CLINICAL IMPLICATION

Hamza Hameed


DOI: http://dx.doi.org/10.30970/sbi.1804.795

Abstract


Background. Polycystic Ovary Syndrome (PCOS) is a hormonal disorder affec­ting women of reproductive age. Alarmingly, there is a significant diagnostic gap, with about 75 % of women in hospital settings unknowingly having PCOS due to inconsistent diagnostic criteria. The manifestations of PCOS are multifaceted, along with hyperandrogenism, which results in excessive male hormones, hirsutism, and irregular menstrual cycles, frequently culminating in infertility and profound mental fitness challenges. The role of oxidative stress cannot be understated; it detrimentally influences the reproductive lifespan and inflicts damage that exacerbates infertility issues.
Materials and Methods. The research was conducted on 80 women between the ages of 25–45 years who were divided into PCOS and control groups. Women’s blood samples were obtained from the Nineveh Health Directorate Oncology and Nuclear Medicine Hospital, Iraq. The levels of AMH and FSH were measured through the ELISA kits. In addition, biochemical parameters such as glucose, total cholesterol, malondial­dehyde (MDA), and glutathione (GSH) were quantified in both control and PCOS women. Relationships between these variables were explored using unpaired t-tests, Pearson’s correlation coefficient, and multiple of regression analysis.
Results and Discussion. FSH levels were positively correlated with age while AMH was related to age inversely, suggesting that aging decreases ovarian reserve in PCOS women. Furthermore, a significant increase in mean serum Malondialdehyde (MDA) was observed for the women with PCOS group compared to healthy controls, aligning with a significant association among AMH and MDA. Remarkably, no statistically significant correlation between FSH and AMH was found relating glucose, and total cholesterol (TC) in the PCOS group. Therefore, the monitoring of these indicators could enhance the clinical care of PCOS.
Conclusion. This study reveals age-associated adjustments in ovarian reserve in PCOS. Moreover, the increase in MDA levels revealed the increased oxidative stress that characterized the condition’s complexity.

Graphical abstract



Keywords


polycystic ovary syndrome, follicle stimulating hormone, anti-Müllerian hormone, body mass index, malondialdehyde

Full Text:

PDF

References


Adibhatla, R. M., & Hatcher, J. F. (2010). Lipid oxidation and peroxidation in CNS health and disease: from molecular mechanisms to therapeutic opportunities. Antioxidants & Redox Signaling, 12(1), 125-169. doi:10.1089/ars.2009.2668
CrossrefPubMedGoogle Scholar

Agarwal, A., Aponte-Mellado, A., Premkumar, B. J., Shaman, A., & Gupta, S. (2012). The effects of oxidative stress on female reproduction: a review. Reproductive Biology and Endocrinology, 10(1), 49. doi:10.1186/1477-7827-10-49
CrossrefPubMedPMCGoogle Scholar

Agarwal, A., Gupta, S., & Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 3(1), 28. doi:10.1186/1477-7827-3-28
CrossrefPubMedPMCGoogle Scholar

Aljarad, M., Alhalabi, N., Hamad, A., Nmr, N., Abbas, F., Alkhatib, A., Alhalabi, M., Al-Hammami, H., & Ibrahim, N. (2019). Prevalence of thyroid autoimmune antibodies in women seeking fertility care in Damascus, Syria. Cureus, 11(8), e5315. doi:10.7759/cureus.5315
CrossrefPubMedPMC Google Scholar

Azziz, R., Carmina, E., Dewailly, D., Diamanti-Kandarakis, E., Escobar-Morreale, H. F., Futterweit, W., Janssen, O. E., Legro, R. S., Norman, R. J., Taylor, A. E., & Witchel, S. F. (2009). The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report. Fertility and Sterility, 91(2), 456-488. doi:10.1016/j.fertnstert.2008.06.035
CrossrefPubMedGoogle Scholar

Barry, J. A., Azizia, M. M., & Hardiman, P. J. (2014). Risk of endometrial, ovarian and breast cancer in women with polycystic ovary syndrome: a systematic review and meta-analysis. Human Reproduction Update, 20(5), 748-758. doi:10.1093/humupd/dmu012
CrossrefPubMedPMCGoogle Scholar

Bahadur, A., Verma, N., Mundhra, R., Chawla, L., Ajmani, M., Sri, M. S., & Arora, S. (2021). Correlation of homeostatic model assessment-insulin resistance, anti-Mullerian hormone, and BMI in the characterization of polycystic ovary syndrome. Cureus, 13(6), e16047. doi:10.7759/cureus.16047
CrossrefPubMedPMCGoogle Scholar

Bland, J. M., & Altman, D. G. (1995). Statistics notes: multiple significance tests: the Bonferroni method. BMJ, 310(6973), 170-170. doi:10.1136/bmj.310.6973.170
CrossrefPubMedPMCGoogle Scholar

Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., & Trakatellis, A. G. (1994). Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. Journal of Agricultural and Food Chemistry, 42(9), 1931-1937. doi:10.1021/jf00045a019
CrossrefGoogle Scholar

Broer, S. L., Broekmans, F. J. M., Laven, J. S. E., & Fauser, B. C. J. M. (2014). Anti-Müllerian hormone: ovarian reserve testing and its potential clinical implications. Human Reproduction Update, 20(5), 688-701. doi:10.1093/humupd/dmu020
CrossrefPubMedGoogle Scholar

Cao, S., Li, X., Gao, Y., Li, F., Li, K., Cao, X., Dai, Y., Mao, L., Wang, S., & Tai, X. (2020). A simultaneously GSH-depleted bimetallic Cu(II) complex for enhanced chemodynamic cancer therapy. Dalton Transactions, 49(34), 11851-11858. doi:10.1039/d0dt01742f
CrossrefPubMedGoogle Scholar

Chen, X., Yang, D., Mo, Y., Li, L., Chen, Y., & Huang, Y. (2008). Prevalence of polycystic ovary syndrome in unselected women from southern China. European Journal of Obstetrics & Gynecology and Reproductive Biology, 139(1), 59-64. doi:10.1016/j.ejogrb.2007.12.018
CrossrefPubMedGoogle Scholar

Cheng, X., & He, B. (2022). Clinical and biochemical potential of antioxidants in treating polycystic ovary syndrome. International Journal of Women's Health, 14, 467-479. doi:10.2147/ijwh.s345853
CrossrefPubMedPMCGoogle Scholar

Cunha, A., & Póvoa, A. M. (2021). Infertility management in women with polycystic ovary syndrome: a review. Porto Biomedical Journal, 6(1), e116. doi:10.1097/j.pbj.0000000000000116
CrossrefPubMedPMCGoogle Scholar

Desai, V., Prasad, N. R., Manohar, S. M., Sachan, A., Narasimha, S. R., & Bitla, A. R. (2014). Oxidative stress in non-obese women with polycystic ovarian syndrome. Journal of Clinical and Diagnostic Research, 8(7), CC01-CC3. doi:10.7860/jcdr/2014/8125.4530
CrossrefPubMedPMCGoogle Scholar

Dybciak, P., Humeniuk, E., Raczkiewicz, D., Krakowiak, J., Wdowiak, A., & Bojar, I. (2022). Anxiety and depression in women with polycystic ovary syndrome. Medicina, 58(7), 942. doi:10.3390/medicina58070942
CrossrefPubMedPMCGoogle Scholar

Enechukwu, C. I., Onuegbu, A. J., Olisekodiaka, M. J., Eleje, G. U., Ikechebelu, J. I., Ugboaja, J. O., Amah, U. K., Okwara, J. E., & Igwegbe, A. O. (2019). Oxidative stress markers and lipid profiles of patients with polycystic ovary syndrome in a Nigerian tertiary hospital. Obstetrics & Gynecology Science, 62(5), 335. doi:10.5468/ogs.2019.62.5.335
CrossrefPubMedPMCGoogle Scholar

Fatima, Q., Amin, S., Kawa, I. A., Jeelani, H., Manzoor, S., Rizvi, S. M., & Rashid, F. (2019). Evaluation of antioxidant defense markers in relation to hormonal and insulin parameters in women with polycystic ovary syndrome (PCOS): a case-control study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13(3), 1957-1961. doi:10.1016/j.dsx.2019.04.032
CrossrefPubMedGoogle Scholar

Freund, A., Johnson, S. B., Rosenbloom, A., Alexander, B., & Hansen, C. A. (1986). Subjective symptoms, blood glucose estimation, and blood glucose concentrations in adolescents with diabetes. Diabetes Care, 9(3), 236-243. doi:10.2337/diacare.9.3.236
CrossrefPubMedGoogle Scholar

Gupta, M., Yadav, R., Mahey, R., Agrawal, A., Upadhyay, A., Malhotra, N., & Bhatla, N. (2019). Correlation of body mass index (BMI), anti-mullerian hormone (AMH), and insulin resistance among different polycystic ovary syndrome (PCOS) phenotypes - a cross-sectional study. Gynecological Endocrinology, 35(11), 970-973. doi:10.1080/09513590.2019.1613640
CrossrefPubMedGoogle Scholar

Hamza, S. M., Abd-alrahman, S. J., & Raheem, S. M. (2016). Correlation between levels of serum antioxidants and numerous hormones in primary infertility of women. International Journal of Scientific Research in Science, Engineering and Technology, 2(3), 801-806.
Google Scholar

Idicula-Thomas, S., Gawde, U., Bhaye, S., Pokar, K., & Bader, G. D. (2020). Meta-analysis of gene expression profiles of lean and obese PCOS to identify differentially regulated pathways and risk of comorbidities. Computational and Structural Biotechnology Journal, 18, 1735-1745. doi:10.1016/j.csbj.2020.06.023
CrossrefPubMedPMCGoogle Scholar

Jena, A. B., Samal, R. R., Bhol, N. K., & Duttaroy, A. K. (2023). Cellular Red-Ox system in health and disease: the latest update. Biomedicine & Pharmacotherapy, 162, 114606. doi:10.1016/j.biopha.2023.114606
CrossrefPubMedGoogle Scholar

Jun, T. J., Jelani, A. M., Omar, J., Rahim, R. A., & Yaacob, N. M. (2020). Serum anti-Müllerian hormone in polycystic ovary syndrome and its relationship with insulin resistance, lipid profile and adiponectin. Indian Journal of Endocrinology and Metabolism, 24(2), 191-195. doi:10.4103/ijem.ijem_305_19
CrossrefPubMedPMCGoogle Scholar

Kim, J. J., Choi, Y. M., Chae, S. J., Hwang, K. R., Yoon, S. H., Kim, M. J., Kim, S. M., Ku, S. Y., Kim, S. H., & Kim, J. G. (2014). Vitamin D deficiency in women with polycystic ovary syndrome. Clinical and Experimental Reproductive Medicine, 41(2), 80. doi:10.5653/cerm.2014.41.2.80
CrossrefPubMedPMCGoogle Scholar

Kloos, J., Coyne, K., & Weinerman, R. (2022). The relationship between anti-Müllerian hormone, body mass index and weight loss: a review of the literature. Clinical Obesity, 12(6), e12559. doi:10.1111/cob.12559
CrossrefPubMedPMCGoogle Scholar

Kohzadi, M., Khazaei, M. R., Choobsaz, F., & Khazaei, M. (2020). Relationship between serum levels of anti-mullerian hormone, adiponectin and oxidative stress markers in patients with polycystic ovary syndrome. International Journal of Fertility & Sterility, 14(1), 27-33. doi:10.22074/ijfs.2020.5809
CrossrefPubMedPMCGoogle Scholar

Köninger, A., Koch, L., Edimiris, P., Enekwe, A., Nagarajah, J., Kasimir-Bauer, S., Kimmig, R., Strowitzki, T., & Schmidt, B. (2014). Anti-Mullerian hormone: an indicator for the severity of polycystic ovarian syndrome. Archives of Gynecology and Obstetrics, 290(5), 1023-1030. doi:10.1007/s00404-014-3317-2
CrossrefPubMedGoogle Scholar

Lie Fong, S., Visser, J. A., Welt, C. K., De Rijke, Y. B., Eijkemans, M. J. C., Broekmans, F. J., ... & Laven, J. S. E. (2012). Serum anti-Müllerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. The Journal of Clinical Endocrinology & Metabolism, 97(12), 4650-4655. doi:10.1210/jc.2012-1440
CrossrefPubMedPMCGoogle Scholar

Luo, E., Zhang, J., Song, J., Feng, D., Meng, Y., Jiang, H., Li, D., & Fang, Y. (2021). Serum anti-Müllerian hormone levels were negatively associated with body fat percentage in PCOS patients. Frontiers in Endocrinology, 12, 659717. doi:10.3389/fendo.2021.659717
CrossrefPubMedPMCGoogle Scholar

MacNaughton, J., Banah, M., McCloud, P., Hee, J., & Burger, H. (1992). Age related changes in follicle stimulating hormone, luteinizing hormone, oestradiol and immunoreactive inhibin in women of reproductive age. Clinical Endocrinology, 36(4), 339-345. doi:10.1111/j.1365-2265.1992.tb01457.x
CrossrefPubMedGoogle Scholar

Macut, D., Bjekić-Macut, J., & Savić-Radojević, A. (2012). Dyslipidemia and oxidative stress in PCOS. Polycystic Ovary Syndrome, 40, 51-63. doi:10.1159/000341683
CrossrefPubMedGoogle Scholar

Manikkumar, R., Roy, D. D., Krishnan, V., & Vijayakumar, T. (2013). Association of DNA damage and dyslipidemia with polycystic ovarian syndrome. Journal of Medical & Allied Sciences, 3(1), 15-21.
Google Scholar

Matsuzaki, T., Munkhzaya, M., Iwasa, T., Tungalagsuvd, A., Yano, K., Mayila, Y., Yanagihara, R., Tokui, T., Kato, T., Kuwahara, A., Matsui, S., & Irahara, M. (2017). Relationship between serum anti-Mullerian hormone and clinical parameters in polycystic ovary syndrome. Endocrine Journal, 64(5), 531-541. doi:10.1507/endocrj.ej16-0501
CrossrefPubMedGoogle Scholar

Moini, A., Shirzad, N., Ahmadzadeh, M., Hosseini, R., Hosseini, L., & Sadatmahalleh, S. J. (2015). Comparison of 25-hydroxyvitamin D and calcium levels between polycystic ovarian syndrome and normal women. International Journal of Fertility & Sterility, 9(1), 1-8. doi:10.22074/ijfs.2015.4201
CrossrefPubMedPMCGoogle Scholar

Murri, M., Luque-Ramírez, M., Insenser, M., Ojeda-Ojeda, M., & Escobar-Morreale, H. F. (2013). Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Human Reproduction Update, 19(3), 268-288. doi:10.1093/humupd/dms059
CrossrefPubMedGoogle Scholar

Muscogiuri, G., Altieri, B., de Angelis, C., Palomba, S., Pivonello, R., Colao, A., & Orio, F. (2017). Shedding new light on female fertility: the role of vitamin D. Reviews in Endocrine and Metabolic Disorders, 18(3), 273-283. doi:10.1007/s11154-017-9407-2
CrossrefPubMedGoogle Scholar

Nardo, L. G., Yates, A. P., Roberts, S. A., Pemberton, P., & Laing, I. (2009). The relationships between AMH, androgens, insulin resistance and basal ovarian follicular status in non-obese subfertile women with and without polycystic ovary syndrome. Human Reproduction, 24(11), 2917-2923. doi:10.1093/humrep/dep225
CrossrefPubMedGoogle Scholar

Okunola, T., Olusegun Ajenifuja, K., Morebise Loto, O., Salawu, A., & Omitinde, S. O. (2017). Follicle stimulating hormone and anti-Müllerian hormone among fertile and infertile women in Ile-Ife, Nigeria: is there a difference? International Journal of Fertility & Sterility, 11(1), 33-39. doi:10.22074/ijfs.2016.4645
CrossrefPubMedPMCGoogle Scholar

Oldfield, A. L., Kazemi, M., & Lujan, M. E. (2021). Impact of obesity on anti-Mullerian hormone (AMH) levels in women of reproductive age. Journal of Сlinical Мedicine, 10(14), 3192. doi:10.3390/jcm10143192
CrossrefPubMedPMCGoogle Scholar

Papalou, O., Victor, V. M., & Diamanti-Kandarakis, E. (2016). Oxidative stress in polycystic ovary syndrome. Current Pharmaceutical Design, 22(18), 2709-2722. doi:10.2174/1381612822666160216151852
CrossrefPubMedGoogle Scholar

Rahsepar, M., Mahjoub, S., Esmaeilzadeh, S., Kanafchian, M., & Ghasemi, M. (2017). Evaluation of vitamin D status and its correlation with oxidative stress markers in women with polycystic ovary syndrome. International Journal of Reproductive Biomedicine, 15(6), 345-350. doi:10.29252/ijrm.15.6.345
CrossrefPubMedPMCGoogle Scholar

Rajpert-De Meyts, E., Jørgensen, N., Græm, N., Müller, J., Cate, R. L., & Skakkebæk, N. E. (1999). Expression of anti-Müllerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. The Journal of Clinical Endocrinology & Metabolism, 84(10), 3836-3844. doi:10.1210/jcem.84.10.6047
CrossrefPubMedGoogle Scholar

Revelli, A., Piane, L. D., Casano, S., Molinari, E., Massobrio, M., & Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reproductive Biology and Endocrinology, 7(1), 40. doi:10.1186/1477-7827-7-40
CrossrefPubMedPMCGoogle Scholar

Rotterdam, E. (2004). Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril, 81(1), 19-25. doi:10.1016/j.fertnstert.2003.10.004
CrossrefGoogle Scholar

Sabuncu, T., Vural, H., Harma, M., & Harma, M. (2001). Oxidative stress in polycystic ovary syndrome and its contribution to the risk of cardiovascular disease. Clinical Biochemistry, 34(5), 407-413. doi:10.1016/s0009-9120(01)00245-4
CrossrefPubMedGoogle Scholar

Sahmay, S., Atakul, N., Aydogan, B., Aydın, Y., Imamoglu, M., & Seyisoglu, H. (2013). Elevated serum levels of anti-Müllerian hormone can be introduced as a new diagnostic marker for polycystic ovary syndrome. Acta Obstetricia et Gynecologica Scandinavica, 92(12), 1369-1374. doi:10.1111/aogs.12247
CrossrefPubMedGoogle Scholar

Sahmay, S., Aydogan Mathyk, B., Sofiyeva, N., Atakul, N., Azami, A., & Erel, T. (2018). Serum AMH levels and insulin resistance in women with PCOS. European Journal of Obstetrics & Gynecology and Reproductive Biology, 224, 159-164. doi:10.1016/j.ejogrb.2018.03.007
CrossrefPubMedGoogle Scholar

Serviente, C., Tuomainen, T.-P., Virtanen, J., Witkowski, S., Niskanen, L., & Bertone-Johnson, E. (2019). Follicle-stimulating hormone is associated with lipids in postmenopausal women. Menopause, 26(5), 540-545. doi:10.1097/gme.0000000000001273
CrossrefPubMedPMCGoogle Scholar

Sheng-Huang, C., Chieh-Hsin, C., Mu-Chun, Y., Wen-Tung, H., Chia-Ying, H., Ya-Ting, H., Wan-Ling, S. U., Jiuan-Jen, S., Chih-Yang, H., & Jer-Yuh, L. (2015). Effects of estrogen on glutathione and catalase levels in human erythrocyte during menstrual cycle. Biomedical Reports, 3(2), 266-268. doi:10.3892/br.2014.412
CrossrefPubMedGoogle Scholar

Shrikhande, L., Shrikhande, B., & Shrikhande, A. (2020). AMH and its clinical implications. The Journal of Obstetrics and Gynecology of India, 70(5), 337-341. doi:10.1007/s13224-020-01362-0
CrossrefPubMedPMCGoogle Scholar

Simon, V., Peigné, M., & Dewailly, D. (2023). The psychosocial impact of polycystic ovary syndrome. Reproductive Medicine, 4(1), 57-64. doi:10.3390/reprodmed4010007
CrossrefGoogle Scholar

Singer, T., Barad, D. H., Weghofer, A., & Gleicher, N. (2009). Correlation of antimüllerian hormone and baseline follicle-stimulating hormone levels. Fertility and Sterility, 91(6), 2616-2619. doi:10.1016/j.fertnstert.2008.03.034
CrossrefPubMedGoogle Scholar

Stefanska, A., Cembrowska, P., Kubacka, J., Kuligowska-Prusinska, M., & Sypniewska, G. (2019). Gonadotropins and their association with the risk of prediabetes and type 2 diabetes in middle-aged postmenopausal women. Disease Markers, 2019, 1-8. doi:10.1155/2019/2384069
CrossrefPubMedPMCGoogle Scholar

Tal, R., & Seifer, D. B. (2017). Ovarian reserve testing: a user's guide. American Journal of Obstetrics and Gynecology, 217(2), 129-140. doi:10.1016/j.ajog.2017.02.027
CrossrefPubMedGoogle Scholar

Teede, H., Deeks, A., & Moran, L. (2010). Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Medicine, 8(1), 41. doi:10.1186/1741-7015-8-41
CrossrefPubMedPMCGoogle Scholar

Wang, N., Kuang, L., Han, B., Li, Q., Chen, Y., Zhu, C., Chen, Y., Xia, F., Cang, Z., Zhu, C., Lu, M., Meng, Y., Guo, H., Chen, C., Lin, D., & Lu, Y. (2015). Follicle-stimulating hormone associates with prediabetes and diabetes in postmenopausal women. Acta Diabetologica, 53(2), 227-236. doi:10.1007/s00592-015-0769-1
CrossrefPubMedPMCGoogle Scholar

Woo, H.-Y., Kim, K.-H., Rhee, E.-J., Park, H., & Lee, M.-K. (2012). Differences of the association of anti-Müllerian hormone with clinical or biochemical characteristics between women with and without polycystic ovary syndrome. Endocrine Journal, 59(9), 781-790. doi:10.1507/endocrj.ej12-0055
CrossrefPubMedGoogle Scholar

Yilmaz, N., Inal, H. A., Gorkem, U., Sargin Oruc, A., Yilmaz, S., & Turkkani, A. (2016). Follicular fluid total antioxidant capacity levels in PCOS. Journal of Obstetrics and Gynaecology, 36(5), 654-657. doi:10.3109/01443615.2016.1148683
CrossrefPubMedGoogle Scholar

Zuo, T., Zhu, M., & Xu, W. (2015). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative Medicine and Cellular Longevity, 2016(1). doi:10.1155/2016/8589318
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Hamza Hameed

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.