AGE-RELATED CHANGES OF ARGINASE ACTIVITY AND NITRIC OXIDE LEVEL IN PHAGOCYTES AND THEIR MODULATION BY THYMIC MESENCHYMAL STROMAL CELLS

R. S. Dovhyi, I. S. Nikolsky, L. M. Skivka


DOI: http://dx.doi.org/10.30970/sbi.1102.533

Abstract


Arginine metabolism plays an important role in the activation of phagocytes, which are responsible for initiation, regulation, and resolution of inflammation. Deterioration of phagocyte functions is thought to cause the development of inflammaging and other age-related disorders. Mesenchymal stromal cells are well known for their immunoregulatory properties and ability to modulate activation status of mononuclear phagocytes. We aimed to compare arginase activity and NO production in phagocytes from different sources in young and aged animals, and to explore the effect of syngeneic thymic mesenchymal stromal cells on these parameters in tissue-resident phagocytes. We found that arginine metabolism of tissue-resident mononuclear phagocytes from aged mice is shifted to alternative or anti-inflammatory phenotype, due to a statistically significant arginase activity increase. Syngeneic co-culture with mesenchymal stromal cells greatly stimulates arginase activity and up-regulates nitric oxide generation by tissue mononuclear phagocytes regardless of cell donor age. Such bi-directional influence may be beneficial in clinical application for simultaneous inhibition of inflammation and infectious process.


Keywords


phagocytes, mesenchymal stromal cells, aging, arginase, nitric oxide

Full Text:

PDF

References


1. Bernardo M.E., Fibbe W.E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell, 2013; 13(4): 392-402.
https://doi.org/10.1016/j.stem.2013.09.006
PMid:24094322

2. Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends in Immunology, 2015; 36(3): 161-178.
https://doi.org/10.1016/j.it.2015.01.003
PMid:25687683

3. Braza F., Dirou S., Forest V. et al. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells, 2016; 34(7): 1836-1845.
https://doi.org/10.1002/stem.2344
PMid:26891455

4. Campbell E.L., Kao D.J., Colgan S.P. Neutrophils and the inflammatory tissue microenvironment in the mucosa. Immunological Reviews, 2016; 273(1):112-120.
https://doi.org/10.1111/imr.12456
PMid:27558331 PMCid:PMC5000861

5. Cassado A.A., D'Império Lima M.R., Bortoluci K.R. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Frontiers in Immunology, 2015; 6:225.
https://doi.org/10.3389/fimmu.2015.00225
PMid:26042120 PMCid:PMC4437037

6. Cecilio C.A., Costa E.H., Simioni P.U. et al. Aging alters the production of iNOS, arginase and cytokines in murine macrophages. Brazilian Journal of Medical and Biological Research, 2011; 44(7): 671-681.
https://doi.org/10.1590/S0100-879X2011007500067
PMid:21625821

7. Classen A., Lloberas J., Celada A. Macrophage activation: classical vs. alternative. In: Reiner N.E. (Ed.) Macrophages and dendritic cell: methods and protocols. NY: Humana Press, 2009: 29-43.
https://doi.org/10.1007/978-1-59745-396-7_3
PMid:19347309

8. Darcy J.C., Minigo G., Piera K.A. et al. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Critical Care, 2014; 18:R163.
https://doi.org/10.1186/cc14003
PMid:25084831 PMCid:PMC4261583

9. Dey A., Allen J., Hankey-Giblin P.A. Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Frontiers in Immunology, 2015; 5: 683.
https://doi.org/10.3389/fimmu.2014.00683
PMid:25657646 PMCid:PMC4303141

10. Dovgiy R.S., Nikolsky I.S., Skivka L.M. The effect of thymic mesenchymal stromal cells on arginase activity and nitric oxide produced by mouse macrophages. The Ukrainian Biochemical Journal, 2017; 89(3): 25-30.
https://doi.org/10.15407/ubj89.03.025

11. Dovgiy R.S., Shitikov D.V., Pishel I.N. et al. Functional state and metabolic polarization of splenic macrophages of old immunized mice. Problemy Stareniya i Dolgoletiya, 2015; 24(2): 144-152. (In Ukrainian)

12. Franceshi C., Garagnani P., Vitale G. et al. Inflammaging and "Garb-aging". Trends in Endocrinology and Metabolism: TEM, 2017; 28(3): 199-212.
https://doi.org/10.1016/j.tem.2016.09.005
PMid:27789101

13. Garbi N., Lambrecht B.N. Location, function, and ontogeny of pulmonary macrophages during the steady state. Pflügers Archiv - European Journal of Physiology, 2017; 469(3-4): 561-572.
https://doi.org/10.1007/s00424-017-1965-3
PMid:28289977

14. Ginhoux F., Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity, 2016; 44(3): 439-449.
https://doi.org/10.1016/j.immuni.2016.02.024
PMid:26982352

15. Ginhoux F., Schultze J.L., Murray P.J. et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nature Immunology, 2016; 17 (1): 34-40.
https://doi.org/10.1038/ni.3324
PMid:26681460

16. Gundra U.M., Girgis N.M., Ruckerl D. et al. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood, 2014; 123 (20): e110-e122.
https://doi.org/10.1182/blood-2013-08-520619
PMid:24695852 PMCid:PMC4023427

17. Hu X., Zhou Y., Dong K. et al. Programming of the development of tumor-promoting neutrophils by mesenchymal stromal cells. Cellular Physiology and Biochemistry, 2014; 33 (6): 1802-1814.
https://doi.org/10.1159/000362959
PMid:24923759

18. Hume D.A., Mabbott N., Raza S., Freeman T.C. Can DCs be distinguished from macrophages by molecular signatures? Nature Immunology, 2013; 14(3): 187-189.
https://doi.org/10.1038/ni.2516
PMid:23416664

19. Kohut M.L., Senchina D.S., Madden K.S. et al. Age effects on macrophage function vary by tissue site, nature of stimulant, and exercise behavior. Experimental Gerontology, 2004; 39 (9): 1347-1360.
https://doi.org/10.1016/j.exger.2004.07.001
PMid:15489058

20. Krasnodembskaya A., Morrison T., O'Kane C. et al. Human mesenchymal stem cells (MSC) modulate alveolar macrophage polarization in vivo and in vitro. European Respiratory Journal, 2014; 44: 3427.

21. Lee C., Geng S., Zhang Y. et al. Programming and memory dynamics of innate leukocytes during tissue homeostasis and inflammation. Journal of Leukocyte Biology, 2017; pii: jlb.6MR0117-027RR.

22. Mocsai A., Zhang H., Jakus Z. et al. G-protein-coupled receptor signaling in Syk-deficient neutrophils and mast cells, Blood, 2003; 101(10): 4155-4163.
https://doi.org/10.1182/blood-2002-07-2346
PMid:12531806

23. Munder M. Arginase: an emerging key player in the mammalian immune system. British Journal of Pharmacology, 2009; 158(3): 638-651.
https://doi.org/10.1111/j.1476-5381.2009.00291.x
PMid:19764983 PMCid:PMC2765586

24. Pekarova M., Lojek A. The crucial role of l-arginine in macrophage activation: What you need to know about it. Life Sciences, 2015; 137: 44-48.
https://doi.org/10.1016/j.lfs.2015.07.012
PMid:26188591

25. Prockop D.J., Phinney D.G., Bunnell B.A. Mesenchymal stem cells: methods and protocols. Totowa, NJ: Humana Press, 2008. 192 p.
https://doi.org/10.1007/978-1-60327-169-1

26. Raber P., Ochoa A.C., Rodriguez P.C. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunological Investigations, 2012. 41(6-7): 614-34.
https://doi.org/10.3109/08820139.2012.680634
PMid:23017138 PMCid:PMC3519282

27. Rodriguez P.C., Ochoa A.C., Al-Khami A.A. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Frontiers in Immunology, 2017; 8: 93.
https://doi.org/10.3389/fimmu.2017.00093
PMid:28223985 PMCid:PMC5293781

28. Silvestre-Roig C., Hidalgo A., Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016; 127 (18): 2173-2181.
https://doi.org/10.1182/blood-2016-01-688887
PMid:27002116

29. Simon A.K., Hollander G.A., McMichael A. Evolution of the immune system in humans from infancy to old age. Proceedings of the Royal Society B: Biological Sciences, 2015; 282: 20143085.
https://doi.org/10.1098/rspb.2014.3085
PMid:26702035 PMCid:PMC4707740

30. Song X., Xie S., Lu K., Wang C. Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation, 2015; 38 (2): 485-492.
https://doi.org/10.1007/s10753-014-9954-6
PMid:24958014

31. Suksuphew S., Noisa P. Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases. World Journal of Stem Cells, 2015; 7(2): 502-511.
https://doi.org/10.4252/wjsc.v7.i2.502
PMid:25815135 PMCid:PMC4369507

32. Tecchio C., Micheletti A., Cassatella M.A. Neutrophil-derived cytokines: facts beyond expression. Frontiers in Immunology, 2014; 5: 508.
https://doi.org/10.3389/fimmu.2014.00508
PMid:25374568 PMCid:PMC4204637

33. Yao B., Huang S., Gao D. et al. Age-associated changes in regenerative capabilities of mesenchymal stem cell: impact on chronic wounds repair. International Wound Journal, 2016; 13 (6): 1252-1259.
https://doi.org/10.1111/iwj.12491
PMid:26424496

34. Yarygin K.N., Lupatov A.Y., Kholodenko I.V. Cell-based therapies of liver diseases: age-related challenges. Clinical Interventions in Aging, 2015; 10: 1909-1924.
https://doi.org/10.2147/CIA.S97926
PMid:26664104 PMCid:PMC4671765

35. Zhang X., Goncalves R., Mosser D.M. The isolation and characterization of murine macrophages. Current Protocols in Immunology, 2008; Chapter 14: Unit-14.1.
https://doi.org/10.1002/0471142735.im1401s111

36. Zhuang Y., Lyga J. Inflammaging in skin and other tissues - the roles of complement system and macrophage. Inflammation & Allergy Drug Targets, 2014; 13 (3): 153-161.
https://doi.org/10.2174/1871528113666140522112003
PMCid:PMC4082166


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.