PEATLAND VEGETATION OF THE SYRA POGONIA MASSIF OF THE RIVNENSKYI NATURE RESERVE (POLISSIA, UKRAINE): ECOLOGICAL CHARACTERISTICS

Mariia Yuskovets, Iryna Rabyk, Oleksander Kuzyarin, Ivan Danylyk


DOI: http://dx.doi.org/10.30970/sbi.1803.780

Abstract


Background. Peat bog complexes are self-sufficient ecosystems in which unique microclimatic conditions leading to a significant diversity of valuable plant communities are formed. Such communities are sensitive to the effects of climate change or any anthropogenic intervention. The lack of reliable information on their distribution on the territory of the Syra Pogonia peat-bog massif of the Rivnenskyi Nature Reserve necessitates a detailed study of the bog vegetation. Therefore, the purpose of the work was to classify the community of peatland vegetation of the Syra Pogonia massif and to determine the features of their syntaxonomic and ecological differentiation for further development of environmental management strategies.
Materials and Methods. The study of the peculiarities of peatland vegetation was conducted on transects that represent the variety of local conditions of the complex system. A total of 141 relevés were analysed using the Braun–Blanquet method. The material was analysed using TURBOVEG 2.79 and JUICE 7.0.83 software. Vegetation units were separated using the method of two-factor indicator species analysis (TWINSPAN). Diagnostic species of syntaxa were determined by the fidelity coefficient phi, the fidelity threshold for which was > 25 %. The statistical significance of the phi coefficient was determined with the Fisher’s test at P < 0.001. The DCA-ordination method was used to identify an ecological differentiation of units.
Results. Peatland vegetation of the Syra Pogonia massif of the Rivnenskyi Nature Reserve was analysed. We identified 7 associations belonging to 6 alliances, 6 orders and 4 classes and compiled a vegetation syntaxonomic scheme. The leading factor of ecological differentiation of community is humidity of the area. The greatest diversity is inherent in mesotrophic areas, rare species are found and grouped according to diffe­rent ecological conditions. The species composition of 7 associations includes 79 plant species, of which 65 are vascular and 14 are bryophytes. Using methods of phytosociological analysis, we established that the distribution of community in multi-dimensional space of ecological factors occurs under the conditions of their complex action. At the same time, changes in the humidity regime are of crucial importance for the selected syntaxa (Andromedo polifoliae-Sphagnetum magellanicі). The results of the phytoindicative analysis proved that the associations identified on the territory of the Syra Pogonia peat-bog complex are acidophilic in terms of acidity, and oligotrophic in terms of the requirements for the content of nutriens.
Conclusions. As orders, and result of the analysis of relevés, 7 associations, which belong to 6 alliances, 6 orders and 4 classes were selected. Based on the results of the dataset analysis, a vegetation classification scheme was compiled. As a result of the cluster analysis of 7 associations, a significant difference between communities of watered and wet habitats was revealed. We established that the differentiation of the vegetation on the territory of the peat massif of Syra Pogonia mainly depends on the change in the moisture regime.


Keywords


peat bog, plant cover, syntaxonomy, ordination, ecological factors, Ukrainian Polissia

Full Text:

PDF

References


Åhlén, I., Hambäck, P., Thorslund, J., Frampton, A., Destouni, G., & Jarsjö, J. (2020). Wetlandscape size thresholds for ecosystem service delivery: evidence from the Norrström drainage basin, Sweden. Science of The Total Environment, 704, 135452. doi:10.1016/j.scitotenv.2019.135452
CrossrefPubMedGoogle Scholar

Ahmad, M., Ahmad, W. S., Ahmad, S. N., Jamal, S., & Saqib, M. (2024). Tracing the roots of wetland degradation in India: a systematic review of anthropogenic drivers, ecological consequences and conservation strategies. GeoJournal, 89(1), 24. doi:10.1007/s10708-024-10997-9
CrossrefGoogle Scholar

Alikhani, S., Nummi, P., & Ojala, A. (2023). Modified, ecologically destructed, and disappeared - history of urban wetlands in helsinki metropolitan area. Wetlands, 43(4), 33. doi:10.1007/s13157-023-01671-w
CrossrefGoogle Scholar

Andriienko, T. L., Priadko, O. I., & Onyshchenko, V. A. (2006). Rarytetna komponenta flory Rivnenskoho pryrodnoho zapovidnyka [Rare component of the flora of the Rivnenskyi Nature Reserve]. Ukrainian Botanical Journal, (64)2, 220-228. (In Ukrainian)
Google Scholar

Aslam, A., Parthasarathy, P., & Ranjan, R. K. (2021). Ecological and societal importance of wetlands: a case study of North Bihar (India). In: P. Singh & S. Sharma (Eds.), Wetlands conservation: current challenges and future strategies (pp. 55-86). Hoboken: John Wiley & Sons, Ltd. doi:10.1002/9781119692621.ch4
CrossrefGoogle Scholar

Bachuryna, H. F. (1964). Torfovi bolota Ukrainskoho Polissia: zahalnyi kharakter, roslynnist, stratyhrafiia, shliakhy rozvytku ta narodnohospodarske znachennia [Peat swamps of the Ukrainian Polissia: general character, vegetation, stratigraphy, ways of development and economic significance]. Kyiv: Naukova dumka. (In Ukrainian)
Google Scholar

Bradis, E. M. (1973). Raion Podilskoho Lisostepu. Torfovo-bolotnyi fond URSR, yoho raionuvannia ta vykorystannia [Podilsky Forest-Steppe District. Peat and Swamp Fund of the Ukrainian SSR, its zoning and use] (pp. 141-152). Kyiv: Naukova dumka. (In Ukrainian)
Google Scholar

Brancaleoni, L., Carbognani, M., Gerdol, R., Tomaselli, M., & Petraglia, A. (2022). Refugial peatlands in the Northern Apennines. Vegetation-environment relationships and future perspectives. Phytocoenologia, 51(3), 275-298. doi:10.1127/phyto/2022/0405
CrossrefGoogle Scholar

Chytrý, M., & Otýpková, Z. (2003). Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science, 14(4), 563-570. doi:10.1111/j.1654-1103.2003.tb02183.x
CrossrefGoogle Scholar

Chytrý, M., Tichý, L., Holt, J., & Botta-Dukát, Z. (2002). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science, 13(1), 79-90. doi:10.1111/j.1654-1103.2002.tb02025.x
CrossrefGoogle Scholar

Chytrý, M. (Ed.). (2011). Vegetace České republiky. 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic. 3. Aquatic and Wetland Vegetation]. Praha: Academia. Retrieved from https://www.sci.muni.cz/botany/chytry/Vegetace-Ceske-republiky-3-2011-low-resolution.pdf (In Czech)
Google Scholar

Chytrý, M. (2013). (Ed.). Vegetace České republiky. 4. Lesní a křovinná vegetace [Vegetation of the Czech Republic. 4. Forest and Scrub Vegetation]. Praha: Academia. Retrieved from https://www.sci.muni.cz/botany/chytry/Vegetace-CR-4-Contents.pdf (In Czech)
Google Scholar

Coldea, G., Filipaş, L. & Stoica, I.-A. (2008). Contributions to Romanian vegetation studies (IV). Contribuţii Botanice, 43, 45-52.
Google Scholar

Dahl, E. (1956). Rondane: mountain vegetation in south Norwayand its relation to the environment. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo, Mathematisk-Naturvidenskapelig Klasse, 3, 1-374.
Google Scholar

Didukh, Y. P. (Ed.). (2009). Chervona knyha Ukrayiny. Roslynnyj svit [The Red Data Book of Ukraine. Plant world]. Kyiv: Hlobalkonsaltynh. (In Ukrainian)
Google Scholar

Dierschke, H. (1994). Pfhlazensoziologie: Grundlagen und Methoden. Stuttgart: Ulmer.
Google Scholar

Dierssen, K., & Dierssen, B. (1985). Suggestions for a common approach in phytosociology for Scandinavian and Central European mire ecologists. Aquilo Series Botanica, 21, 33-44.
Google Scholar

Du Rietz, G. E. (1949). Huvudenheter och huvudgränser i svenskmyrvegetation. Svensk Botanisk Tidskrift, 43, 274-309.
Google Scholar

Dubyna, D. V., Dziuba, T. P., Yemelianova, S. M., Bahrikova, N. O., Borysova, O. V., Borsukevych, L. M., ... Iakushenko, D. M. (2019). Prodromus roslynnosti Ukrainy [Prodrome of the vegetation of Ukraine]. Kyiv: Naukova dumka. Retrieved from https://geobot.org.ua/files/publication/2106/prodr_roslinn_ukr_2019.pdf (In Ukrainian)
Google Scholar

Ellenberg, H., Weber, H. E., Düll, R., Wirth, V., Werner, W., & Paulissen, D. (1992). Zeigerwerte von Pflanzen in MittelEuropa (Vol. 18, pp. 1-248). Göttingen: E. Goltze.
Google Scholar

Hájek, M., Horsák, M., Hájková, P., & Dítě, D. (2006). Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics, 8(2), 97-114.doi:10.1016/j.ppees.2006.08.002
CrossrefGoogle Scholar

Hennekens, S. M., & Schaminée, J. H. J. (2001). TURBOVEG, a comprehensive data base management system for vegetation data. Journal of Vegetation Science, 12(4), 589-591. doi:10.2307/3237010
CrossrefGoogle Scholar

Hill, M. O. (1979). Twinspan - a Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and the attributes. Cornell University, Ithaca.
Google Scholar

Hill, M. O., & Gauch, H. G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio, 42(1-3), 47-58. doi:10.1007/bf00048870
CrossrefGoogle Scholar

Humpenöder, F., Karstens, K., Lotze-Campen, H., Leifeld, J., Menichetti, L., Barthelmes, A., & Popp, A. (2020). Peatland protection and restoration are key for climate change mitigation. Environmental Research Letters, 15(10), 104093. doi:10.1088/1748-9326/abae2a
CrossrefGoogle Scholar

Gerdol, R., & Tomaselli, M. (1997). The vegetation of wetlands in the Dolomites. Dissertationes Botanicae, 281, 1-197.
Google Scholar

Graf, U., Wildi, O., Feldmeyer-Christe, E., & Küchler, M. (2010). A phytosociological classification of Swiss mire vegetation. Botanica Helvetica, 120(1), 1-13. doi:10.1007/s00035-009-0066-0
CrossrefGoogle Scholar

Kulczyński, S. (1949). Peat bogs of Polesie. Mémoires de l'Académie Polonaise des Sciences et des Lettres. Classe des Sciences Mathimatiques et Naturelles. Série B, 15. Sciences naturelles, Cracovie.
Google Scholar

Lawesson, J. E. (2004). A tentative annotated checklist of Danish syntaxa. Folia Geobotanica, 39(1), 73-95. doi:10.1007/bf02803265
CrossrefGoogle Scholar

Lipinskyi, V. M., Diachuk, V. A., & Babichenko, V. M. (Eds.), Klimat Ukrainy [Climate of Ukraine]. (2003). Kyiv: Vydavnytstvo Raievskoho.
Google Scholar

Litopys pryrody Rivnenskoho pryrodnoho zapovidnyka [Chronicle of the nature of the Rivnenskyi Nature Reserve]. (2023). Vol. 25. Sarny: Rivnenskyi pryrodnyi zapovidnyk.

Loisel, J., & Gallego-Sala, A. (2022). Ecological resilience of restored peatlands to climate change. Communications Earth & Environment, 3(1), 208. doi:10.1038/s43247-022-00547-x
CrossrefGoogle Scholar

Malmer, N. (1986). Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany, 64(2), 375-383. doi:10.1139/b86-054
CrossrefGoogle Scholar

Malytska, L. V., & Balabukh, V. O. (2020). Ymovirni zminy klimatychnykh umov Ukrainy do seredyny XXI st. [Possible changes of climate conditions in Ukraine to the middle of the XXI century]. Hidrolohiia, hidrokhimiia i hidroekolohiia, 1(56), 94-100. doi:10.17721/2306-5680.2020.1.10 (In Ukrainian)
CrossrefGoogle Scholar

Matuszkiewicz, W. (2007). Przewodnik do oznaczania zbiorowisk roślinnych Polski [A guide to the identification of plant communities of Poland]. Warszawa: Państwowe Wydawnictwo Naukowe. (In Polish)
Google Scholar

Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R. G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F. J. A., Bergmeier, E., Santos Guerra, A., Ermakov, N., … Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19(S1), 3-264. doi:10.1111/avsc.12257
CrossrefGoogle Scholar

Oberdorfer, E. (1994). Pflanzensoziologische Exkursionsflora (7th. ed.). Stuttgart: Ulmer.
Google Scholar

Onyshchenko, V. A., Andriienko, T. L., & Pryadko, O. I. (2009). Roslynnist dilianky Somyno Rivnenskoho pryrodnoho zapovidnyka [Vegetation of the Somyno part of the Rivnensky zapovidnyk (scientific nature reserve)]. Naukovyi visnyk Volynskoho natsionalnoho universytetu imeni Lesi Ukrainky. Biolohichni nauky, 9, 173-187. (In Ukrainian)
Google Scholar

Onyshchenko, V., Pryadko, O., & Andrienko, T. (2015). Roslynnist dilianky Perebrody Rivnenskoho pryrodnoho zapovidnyka [Vegetation of Perebrody area of Rivnensky Nature Reserve]. Lesya Ukrainka Eastern European National University Scientific Bulletin. Series: Biological Sciences, 12, 32-49. doi:10.29038/2617-4723-2015-313-32-49 (In Ukrainian)
CrossrefGoogle Scholar

Onyshchenko, V., Andrienko, T., & Pryadko, O. (2016). Roslynnist Biloozerskoi dilianky Rivnenskoho pryrodnoho zapovidnyka [Vegetation of Biloozerska part of Rivnensky nature reserve]. Biolohichni Systemy, 8(1), 98-107. doi:10.31861/biosystems2016.01.098 (In Ukrainian)
CrossrefGoogle Scholar

POWO. 2023-onward. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from: http://www.plantsoftheworldonline.org (Accessed 05 March 2024).

Rabyk, I., & Yuskovets, M. (2023). Ekoloho-biomorfolohichna kharakterystyka mokhopodibnykh torfovo-bolotnoho masyvu Syra Pohonia Rivnenskoho pryrodnoho zapovidnyka (Ukraina) [Bryophytes of the Syra Pogonia peat massif of the Rivnenskyi Nature Reserve (Ukraine): ecological and biomorphological characteristics]. Notes in Current Biology, 2(6), 31-39. doi.org/10.29038/ncbio.23.2-4 (In Ukrainian)
CrossrefGoogle Scholar

Roleček, J., Tichý, L., Zelený, D., & Chytrý, M. (2009). Modified TWINSPAN classification in which the hierarchy respects cluster heterogeneity. Journal of Vegetation Science, 20(4), 596-602. doi:10.1111/j.1654-1103.2009.01062.x
CrossrefGoogle Scholar

Steiner, G. M. (1992). Österreichischer Moorschutzkatalog (4th ed.). Vienna: Grüne Reihe des BMUF.
Google Scholar

Tahvanainen, T. (2004). Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the north-eastern fennoscandian Shield. Folia Geobotanica, 39(4), 353-369. doi:10.1007/bf02803208
CrossrefGoogle Scholar

Tichý, L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science, 13(3), 451-453. doi:10.1111/j.1654-1103.2002.tb02069.x
CrossrefGoogle Scholar

Virchenko, V. M., & Nyporko, S. O. (2022). Prodromus sporovykh roslyn Ukrainy: mokhopodibni [Prodromus of spore plants of Ukraine: bryophytes] Kyiv: Naukova dumka. (In Ukrainian)
Google Scholar

Venables, W. N., & Smith, D. M. (2011). An introduction to R notes on R: a programming environment for data analysis and graphics version 2.13.2. Retrieved from http://www.R-project.org

Yuskovets, M., Rabyk, I., Kuzyarin, O., & Danylyk, I. (2023). Bolotni oselyshcha masyvu Syra Pohonia Rivnenskoho pryrodnoho zapovidnyka ta yikhnia sozolohichna otsinka [Peatland habitats of the Syra Pogonia massif of the Rivnenskyi Nature Reserve and their sozological assessment]. Visnyk of Lviv University. Biological Series, 90, 30-38. doi:10.30970/vlubs.2023.90.03 (In Ukrainian)
CrossrefGoogle Scholar

Zerov, D. K. (1938). Bolota URSR. Roslynnist i stratyhrafiia [Swamps of the Ukrainian SSR: vegetation and stratigraphy]. Kyiv: Vydavnytstvo AN URSR. (In Ukrainian)
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mariia Yuskovets, Iryna Rabyk, Oleksander Kuzyarin, Ivan Danylyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.