CALIX[4]ARENE C-956 AS A SELECTIVE INHIBITOR OF Ca2+-PUMP OF THE PLASMA MEMBRANE AND A MODULATOR OF THE CONTRACTILE FUNCTION IN THE MYOMETRIUM

Olga Tsymbalyuk, Tetyana Veklich, Roman Rodik, Sergiy Kosterin


DOI: http://dx.doi.org/10.30970/sbi.1803.789

Abstract


Background. At present, creating and testing pharmacological instruments for selective inhibition of Са2+-pump of the plasma membrane, which would become the foundation for medical preparations, for instance, for the treatment of the impaired excitability of the cardiac and smooth muscles, remains critically significant. We have demon­strated in our previous experiments that calix[4]arene С-956 is effective in inhibi­ting Са2+, Mg2+-ATPase activity of the plasma membrane of myometrium cells. The aim of this study was to investigate the regularities and mechanisms of the impact of calix[4]arene С-956 on Са2+-transporting activity of Са2+, Mg2+-ATPase of the plasma membrane (PM) and the contractile function of rat myometrium.
Materials and Methods. The experiments were conducted using outbred white non-pregnant rats. Ca2+-transporting activity of myocytes PM preparations loaded with Ca2+-sensitive fluorescent probe fluo-4 AM was investigated. The registration of the contractile activity in the preparations of longitudinal smooth muscles of uterine horns with preserved endothelium was done in the isometric mode.
Results. It was determined that calix[4]arene C-956 causes blocking of the transport function of the calcium pump of preparations of plasma membranes of uterine myocytes. The C-956 compound causes an increase in the amplitude of spontaneous contractions and a change in their mechanokinetic parameters during a short-term effect on multicellular preparations of rat myometrium. Calix[4]arene C-956 also significantly affects the contractions caused by high-potassium depolarization of the PM and oxytocin, increa­sing their amplitude and decreasing the rate of relaxation. Blocking the synthesis of nitric oxide significantly enhances the effects of C-956 on spontaneous and high-potassium- and oxytocin-induced contractions of the myometrium.
Conclusions. The results of our research indicate that the main target of the action of calix[4]arene C-956 on myocytes is the calcium pump of the PM. With the preliminary inhibition of nitric oxide synthases followed by the use of C-956, we were able to fully demonstrate the contribution of the calcium pump of the PM to the regulation of uterine contractions.


Keywords


myometrium, Са2+-pump of the plasma membrane, calix[4]arene С-956, contractions, mechanokinetic parameters, Ca2+-signal

Full Text:

PDF

References


Adasme, T., Hidalgo, C., & Herrera-Molina, R. (2023). Editorial: emerging views and players in neuronal calcium signaling: synaptic plasticity, learning/memory, aging, and neuroinflammation. Frontiers in Cellular Neuroscience, 17, 1197417. doi:10.3389/fncel.2023.1197417
CrossrefPubMedPMCGoogle Scholar

Burdyga, V., & Kosterin, S. A. (1991). Kinetic analysis of smooth muscle relaxation. General Physiology and Biophysics, 10(6), 589-598.
PubMedGoogle Scholar

Darbost, U., Rager, M. N., Petit, S., Jabin, I., & Reinaud O. (2005). Polarizing a hydrophobic cavity for the efficient binding of organic guests: the case of calix[6]arene, a highly efficient and versatile receptor for neutral or cationic species. The Journal of the American Chemical Society, 127(23), 8517-8525. doi:10.1021/ja051299u
CrossrefPubMedGoogle Scholar

Di Leva, F., Domi, T., Fedrizzi, L., Lim, D., & Carafoli, E. (2008). The plasma membrane Ca2+ ATPase of animal cells: structure, function and regulation. Archives of Biochemistry and Biophysics, 476(1), 65-74. doi:10.1016/j.abb.2008.02.026
CrossrefPubMedGoogle Scholar

Dirksen, R. T., Eisner, D. A., Ríos, E., & Sipido, K. R. (2022). Excitation-contraction coupling in cardiac, skeletal, and smooth muscle. The Journal of General Physiology, 154(9), e202213244. doi:10.1085/jgp.202213244
CrossrefPubMedPMCGoogle Scholar

Duan, W., Zhou, J., Li, W., Zhou, T., Chen, Q., Yang, F., & Wei, T. (2013). Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase. Protein & Cell, 4(4), 286-298. doi:10.1007/s13238-013-2116-z
CrossrefPubMedPMCGoogle Scholar

Floyd, R., & Wray, S. (2007). Calcium transporters and signalling in smooth muscles. Cell Calcium, 42(4-5), 467-476. doi:10.1016/j.ceca.2007.05.011
CrossrefPubMedGoogle Scholar

Gatto, C., Hale, C. C., Xu, W., & Milanick, M. A. (1995). Eosin, a potent inhibitor of the plasma membrane Ca pump, does not inhibit the cardiac Na-Ca exchanger. Biochemistry, 34(3), 965-972. doi:10.1021/bi00003a031
CrossrefPubMedGoogle Scholar

Kishor Kumar, D. G., Pashupathi, M., Vaidhya, A., Raviprakash, G., Bramhane, A., Panigrahi, M., Karikalan, M., Lingaraju, M. C., M, K., Singh, T. U., & Parida, S. (2024). Involvement of ObRb receptor, Nitric oxide, and BKCa channel signaling pathways in leptin-induced relaxation of pregnant mouse uterus. European Journal of Pharmacology, 176796. doi:10.1016/j.ejphar.2024.176796
CrossrefPubMedGoogle Scholar

Kosterin, S., Tsymbalyuk, O., & Holden, O. (2021). Multiparameter analysis of mechanokinetics of the contractile response of smooth muscles. Series on Biomechanics, 35(1), 14-30.
Google Scholar

Krebs, J. (2022). Structure, function, and regulation of the plasma membrane calcium pump in health and disease. International Journal of Molecular Sciences, 23(3), 1027. doi:10.3390/ijms23031027
CrossrefPubMedPMCGoogle Scholar

Liu, L., Ishida, Y., Okunade, G., Pyne-Geithman, G. J., Shull, G. E., & Paul, R. J. (2007). Distinct roles of PMCA isoforms in Ca2+ homeostasis of bladder smooth muscle: evidence from PMCA gene-ablated mice. American Journal of Physiology. Cell Physiology, 292(1), C423-C431. doi:10.1152/ajpcell.00313.2006
CrossrefPubMedGoogle Scholar

Matthew, A., Kupittayanant, S., Burdyga, T., & Wray, S. (2004). Characterization of contractile activity and intracellular Ca2+ signalling in mouse myometrium. Journal of the Society for Gynecologic Investigation, 11(4), 207-212. doi:10.1016/j.jsgi.2003.10.009
CrossrefPubMedGoogle Scholar

Mohamed, T. M., Oceandy, D., Prehar, S., Alatwi, N., Hegab, Z., Baudoin, F. M., Pickard, A., Zaki, A. O., Nadif, R., Cartwright, E. J., & Neyses, L. (2009). Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. The Journal of Biological Chemistry, 284(18), 12091-12098. doi:10.1074/jbc.M809112200
CrossrefPubMedPMCGoogle Scholar

Naffa, R., Hegedűs, L., Hegedűs, T., Tóth, S., Papp, B., Tordai, A., & Enyedi, Á. (2024). Plasma membrane Ca2+ pump isoform 4 function in cell migration and cancer metastasis. The Journal of Physiology, 602(8), 1551-1564. doi:10.1113/JP284179
CrossrefPubMedGoogle Scholar

Schnitzer, J. E., Oh, P., Jacobson, B. S., & Dvorak, A. M. (1995). Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca2+-ATPase, and inositol trisphosphate receptor. Proceedings of the National Academy of Sciences of the United States of America, 92(5), 1759-1763. doi:10.1073/pnas.92.5.1759
CrossrefPubMedPMCGoogle Scholar

Schuh, K., Uldrijan, S., Telkamp, M., Röthlein, N., & Neyses, L. (2001). The plasma membrane calmodulin-dependent calcium pump: a major regulator of nitric oxide synthase I. The Journal of Cell Biology, 155(2), 201-205. doi:10.1083/jcb.200104131
CrossrefPubMedPMCGoogle Scholar

Sluysmans, S., Salmaso, A., Rouaud, F., Méan, I., Brini, M., & Citi, S. (2022). The PLEKHA7-PDZD11 complex regulates the localization of the calcium pump PMCA and calcium handling in cultured cells. The Journal of Biological Chemistry, 298(8), 102138. doi:10.1016/j.jbc.2022.102138
CrossrefPubMedPMCGoogle Scholar

Srinivasan, G., Parida, S., Pavithra, S., Panigrahi, M., Sahoo, M., Singh, T. U., Madhu, C. L., Manickam, K., Shyamkumar, T. S., Kumar, D., & Mishra, S. K. (2021). Leptin receptor stimulation in late pregnant mouse uterine tissue inhibits spontaneous contractions by increasing NO and cGMP. Cytokine, 137, 155341. doi:10.1016/j.cyto.2020.155341
CrossrefPubMedGoogle Scholar

Tsymbalyuk, O. V. (2021). Modulating the mechanokinetics of spontaneous contractions of the myometrium of rats using calix[4]arene C-90 - plasma membrane calcium ATPase inhibitor. Studia Biologica, 15(2), 3-14. doi:10.30970/sbi.1502.652
CrossrefGoogle Scholar

Tsymbalyuk, O., Veklich, T., Rodik, R., Karakhim, S., Vyshnevskyi, S., Kalchenko, V., & Kosterin, S. (2023). Thapsigargin-resistant thiacalix[4]arene C-1087-sensitive component of the contractile activity in rat myometrium reflects the functioning of plasma membrane calcium pump. Studia Biologica, 17(3), 3-22. doi:10.30970/sbi.1703.725
CrossrefGoogle Scholar

Veklich, T. O. (2016). The inhibitory influence of calix[4]arene of C-90 on the activity of Ca2+,Mg2+-ATPases in plasma membrane and sarcoplasmic reticulum in myometrium сells. The Ukrainian Biochemical Journal, 88(2), 5-15. doi:10.15407/ubj88.02.005
CrossrefPubMedGoogle Scholar

Veklich Т. О., & Kosterin S. O. (2005). Comparative study of properties of Na+, K+-ATPase and Mg2+-ATPase of the myometrium plasma membrane. The Ukrainian Biochemical Journal, 77(2), 66-75. (In Ukrainian)
PubMedGoogle Scholar

Veklich, T. O., Shkrabak, O. A., Nikonishyna, Yu. V., Rodik. R. V., Kalchenko, V. I., & Kosterin, S. O. (2018). Calix[4]arene С-956 selectively inhibits plasma membrane Са2+, Mg2+-АТРase in myometrial cells. The Ukrainian Biochemical Journal, 90(5), 35-43. doi:10.15407/ubj90.05.034
CrossrefGoogle Scholar

Veklich, Т. О., Rodik, R. V., Tsymbalyuk, О. V., Shkrabak, О. V., Maliuk, O. V., Karakhim, S. O., Vyshnevskyi, S. H., Kalchenko, V. І., & Kosterin, S. O. (2023). Thiacalix[4]arene С-1087 is the selective inhibitor of the calcium pump of smooth muscle cells plasma membrane. The Ukrainian Biochemical Journal, 95(6), 5-20. doi:10.15407/ubj95.06.005
CrossrefGoogle Scholar

Williams, J. C., Armesilla, A. L., Mohamed, T. M., Hagarty, C. L., McIntyre, F. H., Schomburg, S., Zaki, A. O., Oceandy, D., Cartwright, E. J., Buch, M. H., Emerson, M., & Neyses, L. (2006). The sarcolemmal calcium pump, α-1 syntrophin, and neuronal nitric-oxide synthase are parts of a macromolecular protein complex. The Journal of Biological Chemistry, 281(33), 23341-23348. doi:10.1074/jbc.M513341200
CrossrefPubMedGoogle Scholar

Wu, X., Weng, L., Zhang, J., Liu, X., & Huang, J. (2018). The plasma membrane calcium ATPases in calcium signaling network. Current Protein & Peptide Science, 19(8), 813-822. doi:10.2174/1389203719666180416122745
CrossrefPubMedGoogle Scholar

Zhang, Y. H., Jin, C. Z., Jang, J. H., & Wang, Y. (2014). Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. The Journal of Physiology, 592(15), 3189-3200. doi:10.1113/jphysiol.2013.270306
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Olga Tsymbalyuk, Tetyana Veklich, Roman Rodik, Sergiy Kosterin

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.