DIAGNOSTIC SENSITIVITY AND SPECIFICITY OF INDICATORS OF GLUTATHIONE ANTIOXIDANT SYSTEM IN SPERMATOZOA OF INFERTILE MEN WITH DIFFERENT FORMS OF PATHOSPERMIA

Zoryana Fedorovych, Mykola Vorobets, Olena Onufrovych, Оksana Melnyk, Natalia Gromnatska, Nataliya Lychkovska, Anna Besedina, Zinoviy Vorobets, Roman Fafula


DOI: http://dx.doi.org/10.30970/sbi.1803.788

Abstract


Background. One of the most important antioxidant defence mechanism in spermatozoa is the gluthatione system which includes glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) and reduced glutathione (GSH). It is promising to use ROC analysis, which allows to assessing the diagnostic sensitivity and specificity of indicators.
Materials and methods. Infertile men were divided into 3 groups: patients with oligozoospermia (n = 30), asthenozoospermia (n = 34), and oligoasthenozoospermia (n = 22). To assess the diagnostic sensitivity and specificity of indicators, the values of the biomarkers were tested using the receiver operating characteristic (ROC) curve, and the area under it (AUC), the standard error (SE) and the 95% confidence interval (CI 95%) were calculated.
Results. The ROC analysis showed that GP activity was characterized by excellent diagnostic significance for diagnosing both oligozoospermia and asthenozoospermia (the sensitivity was 100%, and specificity – 100%). The GR activity has moderate diagnostic significance, since the AUC is 0.654 (95% CI from 0.503 to 0.785, P = 0.0645) for oligozoospermic, the AUC is 0.612 (95% CI from 0.454 to 0.7555, P = 0.1979) for asthenozoospermic men. The analysis of the ROC curve revealed a good diagnostic value of GsT activity in sperm samples for the diagnosis of pathospermia (sensitivity of 75% and specificity of 80%). Simultaneously, it was shown that GSH content could not serve as valuable biomarkers for distinguishing patients with pathospermia from healthy controls, with an AUC of 0.615, corresponding to moderate diagnostic significance for oligozoospermia.
Conclusion. The results of this study show that the cut-off points for the biomar­kers glutathione peroxidase and glutathione-S-transferase can be used to distinguish between patients with pathospermia and normozoospermia, and the parameters themselves can serve as valuable diagnostic biomarkers to distinguish patients with pathospermia from healthy controls, regardless of the causes of pathospermia. The value of these indicators below the cut-off point indicates the probable presence of pathology. Indicators of GR activity and GSH content have a low diagnostic value, which makes them unsuitable for use as laboratory tests for the diagnosis of male infertility.


Keywords


male infertility, antioxidant enzymes, glutathione system, ROC analysis

Full Text:

PDF

References


Agarwal, A., & Bui, A. D. (2017). Oxidation-reduction potential as a new marker for oxidative stress: correlation to male infertility. Investigative and Clinical Urology, 58(6), 385-399. doi:10.4111/icu.2017.58.6.385
CrossrefPubMedPMCGoogle Scholar

Aitken, R. J., Drevet, J. R., Moazamian, A., & Gharagozloo, P. (2022). Male infertility and oxidative stress: a focus on the underlying mechanisms. Antioxidants, 11(2), 306. doi:10.3390/antiox11020306
CrossrefPubMedPMCGoogle Scholar

Akobeng, A. K. (2007). Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatrica, 96(5), 644-647. doi:10.1111/j.1651-2227.2006.00178.x
CrossrefPubMedGoogle Scholar

Barati, E., Nikzad, H., & Karimian, M. (2019). Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cellular and Molecular Life Sciences, 77(1), 93-113. doi:10.1007/s00018-019-03253-8
CrossrefPubMedPMCGoogle Scholar

Fafula, R. V., Onufrovych, O. K., Iefremova, U. P., Melnyk, O. V., Nakonechnyi, I. A., Vorobets, D. Z., & Vorobets, Z. D. (2017). Glutathione content in sperm cells of infertile men. Regulatory Mechanisms in Biosystems, 8(2), 157-161. doi:10.15421/021725
CrossrefGoogle Scholar

Fafula, R., Melnyk, О., Gromnatska, N., Vorobets, D., Fedorovych, Z., Besedina, A., & Vorobets, Z. (2023). Prooxidant-antioxidant balance in seminal and blood plasma of men with idiopathic infertility and infertile men in combination with rheumatoid arthritis. Studia Biologica, 17(2), 15-26. doi:10.30970/sbi.1702.719
CrossrefGoogle Scholar

Gonçalves, L., Subtil, A., Oliveira, M. R., & de Zea Bermudez, P. (2014). ROC curve estimation: an overview. Revstat - Statistical Journal, 12, 1-20. doi:10.57805/revstat.v12i1.141
CrossrefGoogle Scholar

Hamilton, T. R., de Castro, L. S., Delgado, J. de C., de Assis, P. M., Siqueira, A. F., Mendes, C. M., Goissis, M. D., Muiño-Blanco, T., Cebrián-Pérez, J. Á., Nichi, M., Visintin, J. A., & D'Ávila Assumpção, M. E. (2016). Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status. Reproduction, 151(4), 379-390. doi:10.1530/rep-15-0403
CrossrefPubMedGoogle Scholar

Hammadeh, M., Hamad, M., Montenarh, M., & Fischer-Hammadeh, C. (2010). Protamine contents and P1/P2 ratio in human spermatozoa from smokers and non-smokers. Human Reproduction, 25(11), 2708-2720. doi:10.1093/humrep/deq226
CrossrefPubMedGoogle Scholar

Hong, Y., Boiti, A., Vallone, D., & Foulkes, N. S. (2024). Reactive oxygen species signaling and oxidative stress: transcriptional regulation and evolution. Antioxidants, 13(3), 312. doi:10.3390/antiox13030312
CrossrefPubMedPMCGoogle Scholar

Kumar, R., & Indrayan, A. (2011). Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatrics, 48(4), 277-287. doi:10.1007/s13312-011-0055-4
CrossrefPubMedGoogle Scholar

Lopes, F., Pinto-Pinho, P., Gaivão, I., Martins-Bessa, A., Gomes, Z., Moutinho, O., Oliveira, M. M., Peixoto, F., & Pinto-Leite, R. (2021). Sperm DNA damage and seminal antioxidant activity in subfertile men. Andrologia, 53(5), e14027. doi:10.1111/and.14027
CrossrefGoogle Scholar

Mannucci, A., Argento, F. R., Fini, E., Coccia, M. E., Taddei, N., Becatti, M., & Fiorillo, C. (2022). The impact of oxidative stress in male infertility. Frontiers in Molecular Biosciences, 8, 799294. doi:10.3389/fmolb.2021.799294
CrossrefPubMedPMCGoogle Scholar

N'Guessan, M. F., Sery, B. B., Bi, F. J. V., Ekissi, N. A., Djohan, Y. F., Coulibaly, F. A., & Djaman, A. J. (2023). Evaluation of glutathione peroxidase enzymatic activity in seminal plasma of patients treated at the institute Pasteur in Cote d'Ivoire. Advances in Reproductive Sciences, 11(04), 116-126. doi:10.4236/arsci.2023.114011
CrossrefGoogle Scholar

Otasevic, V., Kalezic, A., Macanovic, B., Jankovic, A., Stancic, A., Garalejic, E., Korac, A., & Korac, B. (2019). Evaluation of the antioxidative enzymes in the seminal plasma of infertile men: contribution to classic semen quality analysis. Systems Biology in Reproductive Medicine, 65(5), 343-349. doi:10.1080/19396368.2019.1600171
CrossrefPubMedGoogle Scholar

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. doi: 10.1155/2017/8416763
CrossrefPubMedPMCGoogle Scholar

Rashki Ghaleno, L., Alizadeh, A., Drevet, J. R., Shahverdi, A., & Valojerdi, M. R. (2021). Oxidation of sperm DNA and male infertility. Antioxidants, 10(1), 97. doi:10.3390/antiox10010097
CrossrefPubMedPMCGoogle Scholar

Trevethan, R. (2017). Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Frontiers in Public Health, 5, 307. doi: 10.3389/fpubh.2017.00307
CrossrefPubMedPMCGoogle Scholar

Vorobets, M. Z., Fafula, R. V., Besedina, A. S., Onufrovych, O. K., & Vorobets, D. Z. (2018). Glutathione s-transferase as a marker of oxidative stress in human ejaculated spermatozoa from patients with pathospermia. Regulatory Mechanisms in Biosystems, 9(2), 287-292. doi:10.15421/021842
CrossrefGoogle Scholar

Wei, J., Liu, X., Xue, H., Wang, Y., & Shi, Z. (2019). Comparisons of visceral adiposity index, body shape index, body mass index and waist circumference and their associations with diabetes mellitus in adults. Nutrients, 11(7), 1580. doi:10.3390/nu11071580
CrossrefPubMedPMCGoogle Scholar

World Health Organization. (2021). WHO laboratory manual for the examination and processing of human semen (6th ed.). World Health Organization. Retrieved from https://iris.who.int/bitstream/handle/10665/343208/9789240030787-eng.pdf?sequence=1&isAllowed=y
Google Scholar

Xu, P., Liu, X., Hadley, D., Huang, S., Krischer, J., & Beam, C. (2014). Feature selection using bootstrapped ROC curves. Journal of Proteomics & Bioinformatics, S9. doi:10.4172/jpb.S9-006
CrossrefGoogle Scholar

Zhang, R., Zuo, Y., & Cao, S. (2021). Upregulated microRNA-423-5p promotes oxidative stress through targeting glutathione S-transferase mu 1 in asthenozoospermia. Molecular Reproduction and Development, 88(2), 158-166. doi:10.1002/mrd.23454
CrossrefPubMedGoogle Scholar

Zhang, W. D., Zhang, Z., Jia, L. T., Zhang, L. L., Fu, T., Li, Y. S., Wang, P., Sun, L., Shi, Y., & Zhang, H. Z. (2014). Oxygen free radicals and mitochondrial signaling in oligospermia and asthenospermia. Molecular Medicine Reports, 10(4), 1875-1880. doi:10.3892/mmr.2014.2428
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Zoryana Fedorovych, Mykola Vorobets, Olena Onufrovych, Оksana Melnyk, Natalia Gromnatska, Nataliya Lychkovska, Anna Besedina, Zinoviy Vorobets, Roman Fafula

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.