THE ROLE OF ENERGY METABOLISM IN AMINO ACID STIMULATED INSULIN RELEASE IN PANCREATIC β-HC9 CELLS

 

N. M. Doliba, M. Z. Vatamaniuk, W. Qin, W. Buettger, H. W. Collins, S. L. Wehrli, F. M. Matschirisky


DOI: http://dx.doi.org/10.30970/sbi.0101.008

Abstract


Fuel stimulation of insulin secretion from pancreatic p-cells is thought to be me-diated by metabolic coupling factors that are generated by energized mitochondria, including protons, adenine nucleotides and perhaps certain amino acids, as for instance aspartate, glutamate or glutamine. The goal of the present study was to evaluate the role of such factors when insulin release (IR) is stimulated by glucose or amino acids (AA), alone or combined, using 31P-, 23Na- and 1H-NMR-technology, respirometry and biochemical analysis to study the metabolic events that occur in continuously superfused mouse β-HC9 cells contained in agarose beads and enhanced by the phosphodiesterase inhibitor IBMX. Exposing β-HC9 cells to high glucose or 3.5 mM of a physiological mixture of 18 AA plus 2 mM glutamine (Q) caused a marked stimulation of insulin secretion associated with increased oxygen consumption (V02), c-AMP release and phosphorylation potential (P-potential) as evidenced by higher Phosphocreatine (PCr) and lower Pi peak areas of 31P NMR spectra. Diazoxide blocked stimulation of IR completely suggesting involvement of KATP channels in this process. However, levels of [MgATP] and [MgADP] which regulate channel activity changed only slowly and little while the rate of insulin release increased fast and very markedly. The involvement of other candidate coupling factors was therefore considered. High glucose or AAM + Q increased intracellular pH. The availability of temporal pH profiles allowed the precise computation of the phosphate potential (ATP/P × ADP) in fuel stimulated IR. Intracellular Na+ levels were greatly elevated by AAM + Q. However, glutamine alone or together with 2-amino-2-norbornane-carboxylic acid (BCH, which activates glutamate dehydrogenase) decreased β-cell Na levels. Stimulation of β-cells by glucose in the presence of AAM + Q (0.5 mM) was associated with rising cellular concentrations of glutamate, glutamine and strikingly lower aspartate levels. Methionine sulfoximine (MSO), an inhibitor of glutamine synthetase, blocked the glucose enhancement of AMM + Q induced IR and associated changes in glutamine and aspartate but did not prevent the accumulation of glutamate. The results of this study demonstrate again that an increased phosphate potential and a functional KATP channel are essential for metabolic coupling during fuel stimulated insulin release but illustrate that determining the identity and relative importance of all participating coupling factors and second messengers remains a challenge largely unmet.


Keywords


amino acids, energy metabolism, oxygen consumption, sodium, mitochondria

Full Text:

PDF

References


1. Albano J.D., Barnes G.D., Maudsley D.V. e. a. Factors affecting the saturation assay of cyclic AMP in biological systems. Anal. Biochem, 1974; 60: 130-141.
https://doi.org/10.1016/0003-2697(74)90137-7

2. Ashcroft S.J. The beta-cell K(ATP) channel. J. Membr. Biol, 2000; 176: 187-206.
https://doi.org/10.1007/s002320001095
PMid:10931971

3. Baukrowitz T., Schulte U., Oliver D. e. a. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science, 1998; 282: 1141-1144.
https://doi.org/10.1126/science.282.5391.1141
PMid:9804555

4. Bertrand G., Ishiyama N., Nenquin M. e. a. The elevation of glutamate content and the amplification of insulin secretion in glucose-stimulated pancreatic islets are not causally related. J. Biol. Chem, 2002; 277: 32883-32891.
https://doi.org/10.1074/jbc.M205326200
PMid:12087106

5. Corkey B.E., Deeney J.T., Glennon M.C. e. a. Regulation of steady-state free Ca2+ levels by the ATP/ADP ratio and orthophosphate in permeabilized RINm5F insulinoma cells. J. Biol. Chem, 1988; 263: 4247-4253.

6. Danielsson A., Hellman B., Idahl L.A. Levels of α-ketoglutarate and glutamate in stimulated pancreatic-cells. Horm. Metab. Res, 1970; 2: 28-31.
https://doi.org/10.1055/s-0028-1095123
PMid:4999900

7. Detimary P., Dejonghe S., Ling Z. e. a. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in beta cells but not in alpha cells and are also observed in human islets. J. Biol. Chem, 1998; 273: 33905-33908.
https://doi.org/10.1074/jbc.273.51.33905
PMid:9852040

8. Detimary P., Jonas J.C. Henquin J.C. Possible links between glucose-induced changes in the energy state of pancreatic β-cells and insulin release. Unmasking by decreasing a stable pool of adenine nucleotides in mouse islets. J. Clin. Invest, 1995; 96: 1738-1745.
https://doi.org/10.1172/JCI118219
PMid:7560065 PMCid:PMC185810

9. Doliba N.M., Qin W., Vatamaniuk M.Z. e. a. Cholinergic regulation of fuel-induced hormone secretion and respiration of SUR1-/- mouse islets. Am. J. Physiol. Endocrinol. Metab, 2006; 291: E525-535.
https://doi.org/10.1152/ajpendo.00579.2005
PMid:16638820

10. Doliba N.M., Vatamaniuk M.Z., Buettger C.W. e. a. Differential effects of glucose and glyburide on energetics and Na+ levels of beta-HC9 cells: nuclear magnetic resonance spectroscopy and respirometry studies. Diabetes, 2003; 52: 394-402.
https://doi.org/10.2337/diabetes.52.2.394
PMid:12540613

11. Doliba N.M., Wehrli S.L., Babsky A.M. e. a. Encapsulation and perfusion of mitochondria in agarose beads for functional studies with 31P-NMR spectroscopy. Magn. Reson. Med, 1998; 39: 679-684.
https://doi.org/10.1002/mrm.1910390502
PMid:9581596

12. Dzeja P.P., Terzic A. Phosphotransfer reactions in the regulation of ATP-sensitive K+ channels. Faseb. J, 1998; 12: 523-529.
https://doi.org/10.1096/fasebj.12.7.523
PMid:9576479

13. Erecinska M., Bryla J., Michalik M. e. a. Energy metabolism in islets of Langerhans. Biochim. Biophys. Acta, 1992; 1101: 273-295.
https://doi.org/10.1016/0005-2728(92)90084-F

14. Fan Z., Makielski J.C. Anionic phospholipids activate ATP-sensitive potassium channels. J. Biol. Chem, 1997; 272: 5388-5395.
https://doi.org/10.1074/jbc.272.9.5388
PMid:9038137

15. Fridlyand L.E., Ma L., Philipson L.H. Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions. Am. J. Physiol. Endocrinol. Metab, 2005; 289: E839-848.
https://doi.org/10.1152/ajpendo.00595.2004
PMid:15985450

16. Gao Z.Y., Li G., Najafi H. e. a. Glucose regulation of glutaminolysis and its role in insulin secretion. Diabetes, 1999; 48: 1535-1542.
https://doi.org/10.2337/diabetes.48.8.1535
PMid:10426370

17. Gembal M., Gilon P., Henquin J.C. Evidence that glucose can control insulin release independently from its action on ATP-sensitive K+ channels in mouse β-cells. J. Clin. Invest, 1992; 89: 1288-1295.
https://doi.org/10.1172/JCI115714
PMid:1556189 PMCid:PMC442990

18. Ghosh A., Ronner P., Cheong E. e. a. The role of ATP and free ADP in metabolic coupling during fuel-stimulated insulin release from islet beta-cells in the isolated perfused rat pancreas. J. Biol. Chem, 1991; 266: 22887-22892.

19. Gribble F.M., Proks P., Corkey B.E., Ashcroft F.M. Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J. Biol. Chem, 1998; 273: 26383-26387.
https://doi.org/10.1074/jbc.273.41.26383
PMid:9756869

20. Gupta R.K., Yushok W.D. Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. USA, 1980; 77: 2487-2491.
https://doi.org/10.1073/pnas.77.5.2487
PMid:6930646 PMCid:PMC349425

21. Gylfe E., Hellman B. Role of glucose as a regulator and precursor of amino acids in the pancreatic beta-cells. Endocrinology, 1974; 94: 1150-1156.
https://doi.org/10.1210/endo-94-4-1150
PMid:4206544

22. Hellerstrom C., Andersson A., Welsh M. Respiration of the pancreatic β-cell: effects of glucose and 2-aminonorbornane-2-carboxylic acid. Horm. Metab. Res, 1980; Suppl 10: 37-43.

23. Herbert V., Lau K.S., Gottlieb C.W., Bleicher S.J. Coated charcoal immunoassay of insulin. J. Clin. Endocrinol. Metab, 1965; 25: 1375-1384.
https://doi.org/10.1210/jcem-25-10-1375
PMid:5320561

24. Hutton J.C., Malaisse W.J. Dynamics of O2 consumption in rat pancreatic islets. Diabetologia, 1980; 18: 395-405.

25. Janjic D., Andereggen E., Deng S. e. a. Improved insulin secretion of cryopreserved human islets by antioxidant treatment. Pancreas, 1996; 13: 166-172.
https://doi.org/10.1097/00006676-199608000-00008
PMid:8829185

26. Juntti-Berggren L., Arkhammar P., Nilsson T. e. a. Glucose-induced increase in cytoplasmic pH in pancreatic beta-cells is mediated by Na+/H+ exchange, an effect not dependent on protein kinase C. J. Biol. Chem, 1991; 266: 23537-23541.

27. Kakei M., Kelly R.P., Ashcroft S.J., Ashcroft F.M. The ATP-sensitivity of K+ channels in rat pancreatic B-cells is modulated by ADP. FEBS Lett, 1986; 208: 63-66.
https://doi.org/10.1016/0014-5793(86)81533-2

28. Krippeit-Drews P., Backer M., Dufer M., Drews G. Phosphocreatine as a determinant of K(ATP) channel activity in pancreatic beta-cells. Pflugers Arch, 2003; 445: 556-562.
https://doi.org/10.1007/s00424-002-0975-x
PMid:12634926

29. Larsson O., Ammala C., Bokvist K. e. a. Stimulation of the KATP channel by ADP and diazoxide requires nucleotide hydrolysis in mouse pancreatic beta-cells. J. Physiol, 1993; 463: 349-365.
https://doi.org/10.1113/jphysiol.1993.sp019598
PMid:8246187

30. Larsson O., Deeney J.T., Branstrom R. e. a. Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. J. Biol. Chem, 1996; 271: 10623-10626.
https://doi.org/10.1074/jbc.271.18.10623
PMid:8631866

31. Li C., Buettger C., Kwagh J. e. a. A signaling role of glutamine in insulin secretion. J. Biol. Chem, 2004; 279: 13393-13401.
https://doi.org/10.1074/jbc.M311502200
PMid:14736887

32. Li C., Najafi H., Daikhin Y. e. a. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets. J. Biol. Chem, 2003; 278: 2853-2858.
https://doi.org/10.1074/jbc.M210577200
PMid:12444083

33. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem, 1951; 193: 265-275.

34. Lu D., Mulder H., Zhao P. e. a. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc. Natl. Acad. Sci. USA, 2002; 99: 2708-2713.
https://doi.org/10.1073/pnas.052005699
PMid:11880625 PMCid:PMC122412

35. MacDonald M.J., Fahien L.A. Glutamate is not a messenger in insulin secretion. J. Biol. Chem, 2000; 275: 34025-34027.
https://doi.org/10.1074/jbc.C000411200
PMid:10967090

36. Maechler P., Wollheim C.B. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature, 1999; 402: 685-689.
https://doi.org/10.1038/45280
PMid:10604477

37. Malaisse W.J., Sener A., Carpinelli A.R. e. a. The stimulus-secretion coupling of glucose-induced insulin release. XLVI. Physiological role of L-glutamine as a fuel for pancreatic islets. Mol. Cell. Endocrinol, 1980; 20: 171-189.
https://doi.org/10.1016/0303-7207(80)90080-5

38. Michalik M., Nelson J., Erecinska M. Glutamate production in islets of Langerhans: properties of phosphate-activated glutaminase. Metabolism, 1992; 41: 1319-1326.
https://doi.org/10.1016/0026-0495(92)90102-G

39. Misler S., Gillis K., Tabcharani J. Modulation of gating of a metabolically regulated, ATP-dependent K+ channel by intracellular pH in β-cells of the pancreatic islet. J. Membr. Biol, 1989; 109: 135-143.
https://doi.org/10.1007/BF01870852
PMid:2671376

40. Panten U., Zielmann S., Langer J. e. a. Regulation of insulin secretion by energy metabolism in pancreatic β-cell mitochondria. Studies with a non-metabolizable leucine analogue. Biochem. J, 1984; 219: 189-196.
https://doi.org/10.1042/bj2190189
PMid:6372787 PMCid:PMC1153464

41. Prentki M., Matschinsky F.M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol. Rev, 1987; 67: 1185-1248.
https://doi.org/10.1152/physrev.1987.67.4.1185
PMid:2825225

42. Ronner P., Naumann C.M., Friel E. Effects of glucose and amino acids on free ADP in betaHC9 insulin-secreting cells. Diabetes, 2001; 50: 291-300.
https://doi.org/10.2337/diabetes.50.2.291
PMid:11272139

43. Rosario L.M., Rojas E. Modulation of K+ conductance by intracellular pH in pancreatic beta-cells. FEBS Lett, 1986; 200: 203-209.
https://doi.org/10.1016/0014-5793(86)80539-7

44. Rutter G.A. Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances. Mol. Aspects. Med, 2001; 22: 247-284.
https://doi.org/10.1016/S0098-2997(01)00013-9

45. Sato Y., Aizawa T., Komatsu M. e. a. Dual functional role of membrane depolarization/Ca2+ influx in rat pancreatic β-cell. Diabetes, 1992; 41: 438-443.
https://doi.org/10.2337/diab.41.4.438
PMid:1318855

46. Schulze D., Rapedius M., Krauter T., Baukrowitz T. Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. J. Physiol, 2003; 552: 357-367.
https://doi.org/10.1113/jphysiol.2003.047035
PMid:14561820 PMCid:PMC2343384

47. Sener A., Conget I., Rasschaert J. e. a. Insulinotropic action of glutamic acid dimethyl ester. Am. J. Physiol, 1994; 267: E573-584.
https://doi.org/10.1152/ajpendo.1994.267.4.E573
PMid:7943307

48. Sener A., Malaisse-Lagae F., Malaisse W.J. Stimulation of pancreatic islet metabolism and insulin release by a nonmetabolizable amino acid. Proc. Natl. Acad. Sci. USA, 1981; 78: 5460-5464.
https://doi.org/10.1073/pnas.78.9.5460
PMid:6117857 PMCid:PMC348765

49. Sener A., Malaisse W.J. L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature, 1980; 288: 187-189.
https://doi.org/10.1038/288187a0
PMid:7001252

50. Seo Y., Murakami M., Watari H. e. a. Intracellular pH determination by a 31P-NMR technique. The second dissociation constant of phosphoric acid in a biological system. J. Biochem. (Tokyo), 1983; 94: 729-734.
https://doi.org/10.1093/oxfordjournals.jbchem.a134413
PMid:6643418

51. Shepherd R.M., Henquin J.C. The role of metabolism, cytoplasmic Ca2+, and pH-regulating exchangers in glucose-induced rise of cytoplasmic pH in normal mouse pancreatic islets. J. Biol. Chem, 1995; 270: 7915-7921.
https://doi.org/10.1074/jbc.270.14.7915
PMid:7713887

52. Stiernet P., Guiot Y., Gilon P., Henquin J.C. Glucose acutely decreases pH of secretory granules in mouse pancreatic islets. Mechanisms and influence on insulin secretion. J. Biol. Chem, 2006; 281: 22142-22151.
https://doi.org/10.1074/jbc.M513224200
PMid:16760469

53. Tanaka A., Chance B., Quistorff B. A possible role of inorganic phosphate as a regulator of oxidative phosphorylation in combined urea synthesis and gluconeogenesis in perfused rat liver. A phosphorus magnetic resonance spectroscopy study. J. Biol. Chem, 1989; 264: 10034-10040.

54. Tarasov A., Dusonchet J., Ashcroft F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes, 2004; 53 Suppl 3: S113-122.
https://doi.org/10.2337/diabetes.53.suppl_3.S113
PMid:15561898

55. Tian Y., Laychock S.G. Protein kinase C and calcium regulation of adenylyl cyclase in isolated rat pancreatic islets. Diabetes, 2001; 50: 2505-2513.
https://doi.org/10.2337/diabetes.50.11.2505
PMid:11679428

56. Wesslen N., Bergsten P., Hellman B. Glucose-induced reduction of the sodium content in beta-cell-rich pancreatic islets. Biosci. Rep, 1986; 6: 967-972.
https://doi.org/10.1007/BF01114973
PMid:3555640


Refbacks

  • There are currently no refbacks.


Copyright (c) 2007 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.