USAGE OF METALS AS THE TERMINAL ELECTRON ACCEPTORS BY THE SULFATE-REDUCING BACTERIA

T. B. Peretyatko, A. A. Halushka, S. P. Gudz


DOI: http://dx.doi.org/10.30970/sbi.0303.048

Abstract


The review briefly describes the toxic effects of heavy metals towards microorganisms and the resistance mechanisms to heavy metals. The processes of fermentative and non-fermentative reduction of oxidized metals forms by the sulfate-reducing bacteria and factors that have influence these processes are described. Some sulfate-redu­cing bacteria using metals as terminal electrons acceptors are described. Data about the usage of these microorganisms in the bioremediation are presented. The attention is paid to the usage of psychrophylic sulfate-reducing bacteria in these processes.


Keywords


heavy metals, dissimilatory sulfate reduction, sulfate-reducing bacteria, metals reduction, bioremediation

References


1. Авакян З.А. Сравнительная токсичность тяжелых металлов для некоторых микроорганизмов. Микробиология, 1967; 36(3): 445-450.

2. Бухтіяров А.Є. Резистентність гетеротрофних морських бактерій Одеського прибережжя до важких металів: Автореф. дис. … канд. біол. наук. Севастополь, 2006. 19 с.

3. Герасимчук А.Л., Франк Ю.А. Выделение и изучение чистой культуры сульфатредуцирующих бактерий, устойчивых к тяжелым металлам и пониженным температурам, из осадков ветландов Норильской промышленной зоны. Экология Южной Сибири и сопредельных территорий: Материалы международной научной конференции студентов и молодых ученых, Абакан, 2004: 9.

4. Громов Б.В., Павленко Г.В. Экология бактерий. Ленинград: ЛГУ, 1989. 246 с.

5. Грузина Т.Г., Чеховская Т.П., Баланина М.Н., Ульберг З.Р. Изучение ингибирующего влияния ионов свинца на клетки некоторых штаммов бактерий рода Pseudomonas. Украинский биохимический журнал, 2002; 74(2): 115-119.

6. Иванов А.Ю., Гаврюшнин А.В., Сиунова Т.В. Устойчивость некоторых бактерий рода Pseudomonas к повреждающему действию тяжелых металлов. Микробиология, 1999; 68(3): 366-374.

7. Илялетдинов А.Н. Микробиологическое превращение металлов. Алма-Ата: Наука, 1984. 268.

8. Калинина Л.М., Полухина Г.Н., Лукашева Л.Н. Salmonella typhimurium - тест-система для выявления мутагенной активности загрязнителей окружающей среды. Сообщение І. Мутагенное действие солей тяжелых металлов в системах in vitro и in vivo без метаболической активации. Генетика, 1977; 60(8): 1089-1092.

9. Определитель бактерий Берджи / Под ред. Дж. Хоулта, Р. Крига, П.Снита, Дж. Стейли и С.Уильямса. Москва: Мир, 1997. - 432 с.

10. Розанова Е.П., Назина Т.Н. Сульфатвосстанавливающие бактерии (систематика и метаболизм). Успехи микробиологии, 1989; 23: 191-226.

11. Савельева Л.С., Эпов А.Н. Очистка сточных вод на биоплато. Экология и промышленность России, 2000; 8: 26-28.

12. Смирнова Л.Л., Воронова О.К. Адаптация морских перифитонных микроорганизмов к различным концентрациям меди в модельных системах. Микробиологический журнал, 1999; 61(6): 51-57.

13. Таширев А.Б. Взаимодействие микроорганизмов с металлами. Микробиологический журнал, 1995; 57(2): 95-104.

14. Франк Ю.А., Лушников С.В. Биотехнологический потенциал сульфатредуцирующих бактерий. Экология и промышленность, 2006; 1: 10-13.

15. Яппарова Э.Н. Сравнительный анализ токсического действия ионов ртути на фототрофные организмы: Автореф. дис. … канд. биол. наук.: 04.00.10 / Башкир. гос. ун-т, Уфа, 1999. 24 с.

16. Anderson R.F., LeHuray A.P., Fleisher M.Q., Murray J.W. Uranium deposition in Saanich Inlet Sediments, Vancouver Island. Geochim. Cosmochim. Acta, 1989; 53(9): 2205-2213.
https://doi.org/10.1016/0016-7037(89)90344-X

17. Baldi F., Pepi M., Filippelli M. Methylmercury resistance in Desulfovibrio desulfuricans strains in relation to methylmercury degradation. Appl. Environ. Microbiol, 1993; 59(8): 2479-2485.

18. Barkay T., Miller S.M., Summers A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 2003; 27(2-3): 355-384.
https://doi.org/10.1016/S0168-6445(03)00046-9

19. Barton L.L., Tomei F.A. Characteristics and activities of sulfate-reducing bacteria / Sulfate-reducing Bacteria. Ed. L.L. Barton. New York: Plenum Press, 1995: 1-32.
https://doi.org/10.1007/978-1-4899-1582-5_1

20. Bharathi P.A.L., Sathe V., Chandramohan D. Effect of lead, mercury and cadmium on a sulphate-reducing bacterium. Environ. Pollt, 1990; 67(4): 361-374.
https://doi.org/10.1016/0269-7491(90)90072-K

21. Binet M.R., Poole R.K. Cd (II), Pb (II) and Zn (II) ions regulate expression of the metal-transporting P-type ATPase ZntA in Escherichia coli. FEBS Lett, 2000; 473(1): 67-70.
https://doi.org/10.1016/S0014-5793(00)01509-X

22. Brierley C.L., Brierley J.A., Davidson M.S. Applied microbial processes for metals recovery and removal from wastewater. Metal Ions and Bacteria (Eds. T.J. Beveridge, R.J. Doyle). New York: John Wiley&Sons, 1989; 359-381.

23. Cervantes C., Silver S. Plasmid chromate resistance and chromate reduction. Plasmid, 1992; 27(1): 65-71.
https://doi.org/10.1016/0147-619X(92)90007-W

24. Cowling S.J., Gardner M.J., Hunt D.T.E. Removal of heavy metals from sewage by sulphide precipitation: thermodynamic calculations and test on a pilot-scale anaerobic reactor. Environ. Technol, 1992; 13(3): 281-291.
https://doi.org/10.1080/09593339209385155

25. Cooksey D.A. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol. Rev, 1994; 14 (4): 381-386.
https://doi.org/10.1016/0168-6445(94)90056-6

26. De Flora S., Bennicelli C., Bagnasco M. Genotoxicity of mercury compounds. Mut. Res, 1994; 317(1): 57-79.
https://doi.org/10.1016/0165-1110(94)90012-4

27. Eger P. Wetland treatment for trace metal removal from mine drainage: The importance of aerobic and anaerobic processes. Water Sci. Tech,1994; 29(1): 249-256.
https://doi.org/10.2166/wst.1994.0203

28. Fortin D., Roy M., Rioux Ph., Thibault P.J. Occurrence of sulfate-reducing bacteria under a wide range of physico-chemical conditions in Au and Cu-Zn mine tailings. FEMS Microbiol. Ecol, 2000; 33(3): 197-208.
https://doi.org/10.1016/S0168-6496(00)00062-3

29. Gadd G.M. Bioremedial potential of microbial mechanisms of metal mobilizattion and immobilization. Current Opin. In Biotechnol, 2000; 11(3): 241-249.
https://doi.org/10.1016/S0958-1669(00)00095-1

30. Gadd G.M. Metals and microorganisms: a problem of definition. FEMS Microbiol. Letts, 1992; 79(1-3): 197-203.
https://doi.org/10.1016/0378-1097(92)90209-7

31. Gadd G.M. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev, 1993; 11: 297-316.
https://doi.org/10.1016/0168-6445(93)90003-R

32. Gadd G.M., Griffiths A.J. Microorganisms and heavy metal toxicity. Microbiol. Ecol, 1978; 4: 303-317.
https://doi.org/10.1007/BF02013274
PMid:24232222

33. Gaines C.G., Lodge J.S., Arceneaux J.E.L., Byers B.R. Ferrisiderophore reductase activity associated with an aromatic biosynthetic enzyme complex in Bacillus subtili. J. Bacteriol, 1981; 148(2): 527-533.

34. Gorby Y.A., Lovley D.R. Enzymatic uranium precipitation. Environ. Sci. Technol, 1992; 26(1): 205-207.
https://doi.org/10.1021/es00025a026

35. Groze C., Grass G., Anton A. et al. Transcriptional organization of the czc heavy metal homeostasis determinant from Alcaligenes eutrophus. J. Bacteriol, 1999; 181(8): 2385-2393.

36. Hao O.J. Metal effects on sulfur cycle bacteria and metal removal by sulfate-reducing bacteria. Environmental technologies to treat sulfur pollution. Principles and engineering / P.N.L. Lens, P.L. Hulshoff (ed.).London: IWA-publishing, 2000; 393-414.

37. Hostetler P.B., Garrels R.M. Transportation and precipitation of uranium and vanadium at low temperatures with special reference to sandstone-type uranium. Econ. Geol, 1962; 57(2): 137-167.
https://doi.org/10.2113/gsecongeo.57.2.137

38. Huyer M., Page W. Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+. J. Bacteriol, 1989; 171(7): 4031-4037.
https://doi.org/10.1128/jb.171.7.4031-4037.1989
PMid:2525550

39. Inbar O., Ron E.Z. Induction of cadmium tolerance in Escherichia coli K12. FEMS Microbiol Lett, 1993; 113(2): 197-200.
https://doi.org/10.1111/j.1574-6968.1993.tb06513.x
PMid:8262368

40. Janssen P.H., Schuhmann A., Bak F., Liesack W. Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol, 1996; 166: 184-192.
https://doi.org/10.1007/s002030050374

41. Jensen M.L. Sulfur isotopes and the origin of sandstone-type uranium deposits. Econ. Geol, 1958; 53(5): 598-616.
https://doi.org/10.2113/gsecongeo.53.5.598

42. Jobling M.G., Peters S.E., Ritchie D.A. Plasmid borne mercury resistance in aquetic bacteria. FEMS Microbiol. Leets, 1988; 49(1): 31-37.
https://doi.org/10.1111/j.1574-6968.1988.tb02677.x

43. Jones H.E. Cytochromes and other pigments of dissimilatory sulfate-reducing bacteria. Arch. Microbiol, 1972; 84(3): 207-222.
https://doi.org/10.1007/BF00425199
PMid:5052039

44. Karnachuk O.V. Influenze of hexavalent chromium on hydrogen sulfide formation by sulfate-reducing bacteria. Microbiology, 1995; 64: 262-265.

45. Karnachuk O.V., Frank Y.A., Kaksonen A.H. et al. Isolation and characterization of new copper-resistant sulfate-reducing bacteria. BioMicroWorld-2005. Fostering Cross-disciplinary Applied Research in Microbiology and Microbial Biotechnology. Book of Abstracts. 1st International Conference on Environmental, Industrial and Applied Microbiology, Badajoz (Spain), March 15-18th, 2005: 699.

46. Karnachuk О.V., Kurochkina S.Y., Nicomrat D.et al. Copper resistance in Desulfovibrio strain R2. Antonie Van Leuwenhoek. Journal of Microbiology (Holland), 2003; 83(1): 99-106.
https://doi.org/10.1023/A:1022947302637
PMid:12755486

47. Kaur P., Rosen B.P. Plasmid encoded resistance to arsenic and antimony. Plasmid, 1992; 27(1): 29-40.
https://doi.org/10.1016/0147-619X(92)90004-T

48. Klinkhammer G.P., Palmer M.R. Uranium in the oceans: where it goes and why // Geochim. Cosmochim. Acta, 1991; 55: 1799-1806.
https://doi.org/10.1016/0016-7037(91)90024-Y

49. Knoblauch C., Sahm K., Jorgensen B.B. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen.nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen.nov. and Desulfotalea arctica sp. nov. J. Syst. Bacteriol, 1999; 49(4): 1631-1643;
https://doi.org/10.1099/00207713-49-4-1631
PMid:10555345

50. Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta, 1978; 42: 547-569.
https://doi.org/10.1016/0016-7037(78)90001-7

51. Laverman A.M., Blum J.S., Schaefer J.K. et al. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl. Environ. Microbiol, 1995; 61(10): 3556-3561.

52. Lloyd J.R. Microbial reduction of metals and radionuclids. FEMS Microbiology Reviews, 2003; 27(2-3): 411-425.
https://doi.org/10.1016/S0168-6445(03)00044-5

53. Lovely D.R. Dissimilatory metal reduction. Annu. Rev. Microbiol, 1993; 47: 263-290.
https://doi.org/10.1146/annurev.mi.47.100193.001403
PMid:8257100

54. Lovley D.R., Phillips E.J.P. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl. Environ. Microbiol, 1994; 60(7): 2394-2399.

55. Lovley D.R., Phillips E.J.P. Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl. Environ. Microbiol, 1994; 60(2): 726-728.

56. Lovley D.R., Phillips E.J.P. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol, 1992; 58(3): 850-856.

57. Lovley D.R., Phillips E.J.P., Gorby Y.A., Landa E.R. Microbial reduction of uranium. Nature, 1991; 350: 413-416.
https://doi.org/10.1038/350413a0

58. Lovley D.R., Roden E.E., Phillips E.J.P., Woodward J.C. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol, 1993; 113(1-2): 41-53.
https://doi.org/10.1016/0025-3227(93)90148-O

59. Lutkenhaus J.F. Role of a major outer membrane protein in Escherichia coli. J. Bacteriol, 1977; 131(2): 63-637.

60. Macy J.M. Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int. J. Syst. Bacteriol, 1996; 46(4): 1153-1157.
https://doi.org/10.1099/00207713-46-4-1153
PMid:8863450

61. Maynard J.B. Geochemistry of sedimentary ore deposits. New York: Springer-Verlag, 1983; 305.
https://doi.org/10.1007/978-1-4613-9493-8
PMCid:PMC2536067

62. Misra T.K. Bactereial resistance to inorganic mercury salts and organomercurials. Plasmid, 1992; 27(1): 4-16.
https://doi.org/10.1016/0147-619X(92)90002-R

63. Mohagheghi A., Updegraff D.M., Goldhaber M.B. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. J. Geomicrobiol, 1985; 4(2): 153-173.
https://doi.org/10.1080/01490458509385929

64. Moody M.D., Dailey H.A. Ferric iron reductase of Rhodopseudomonas sphaeroides. J. Bacteriol, 1985; 163(3): 1120-1125.

65. Nakamura K., Sakamoto M., Uchiyama H., Yagi O. Organomercurial-volatilising bacteria in the mercury polluted sediment of Minimata bay. Jpn. Appl. and Environ. Microbiol, 1990; 56(1): 304-305.

66. Newmann D.K., Kennedy E.K., Coates J.D. et al. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol, 1997; 168: 380-388.
https://doi.org/10.1007/s002030050512
PMid:9325426

67. Nies D.H. Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid, 1992; 27(1): 17-28.
https://doi.org/10.1016/0147-619X(92)90003-S

68. Nowak A., Przebulewska K., Szopa E., Stacewicz A. Influence of the heavy metals (Hg, Cd, Cu, Pb) on the growth and ferment activity of soil bacteria. Folia Univ. Agr. Ctetin. Agr, 2001; 88: 165-173.

69. Oremland R.S., Steinberg N.A., Maest A.S. et al. Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ. Sci. Technol, 1990; 24(8): 1157-1164.
https://doi.org/10.1021/es00078a001

70. Pan-Hou H.S.K., Imura N. Role of hydrogen sulphide in mercury resistance determined by plasmid of Clostridium cochlearium T2. Arch. Microbiol, 1981; 129(1): 49-52.
https://doi.org/10.1007/BF00417179
PMid:7224780

71. Pan-Hou H.S.K., Nishimoto M., Imura N. Possible role of membrane proteins in mercury resistance of Enterobacter aerogenes. Arch. Microbiol, 1981; 130(2): 93-95.
https://doi.org/10.1007/BF00411057
PMid:6459062

72. Pongratz R., Heumann K. Production of methylated mercury, lead and cadmium by marine bacteria as a significant source for atmospheric haevy metals in polar regions. Chemosphere, 1999; 39(1): 89-102.
https://doi.org/10.1016/S0045-6535(98)00591-8

73. Postgate J.R. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge Univ. press, 1984; 199.

74. Postma D. Concentration of Mn and separation from Fe in Sediments. I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe (II) at 10°C. Geochim. Cosmochim. Acta, 1985; 49(4): 1023-1033.
https://doi.org/10.1016/0016-7037(85)90316-3

75. Rendorf S.E., Li G. Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol, 1996; 30: 1614-1617.
https://doi.org/10.1021/es950618m

76. Reynolds R.L., Goldhaber M.B. Iron disulfide minerals and the genesis of roll-type uranium deposits. Econ. Geol, 1983; 78(1): 105-120.
https://doi.org/10.2113/gsecongeo.78.1.105

77. Rouch D.A., Lee B.T.O., Morby A.P. Understanding cellular responses to toxic agents: a mechanism-choice in bacterial metal resistance. J. Ind. Microbiol, 1995; 14(2): 132-141.
https://doi.org/10.1007/BF01569895
PMid:7766205

78. Schiering N., Kabsch W., Moore M.J. et al. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607. Nature, 1991; 352(6331): 168-172.
https://doi.org/10.1038/352168a0
PMid:2067577

79. Seghezzo L., Zeeman G., van Lier J.B. et al. A review: the anaerobic treatment of sewage in UASB and EGSB reactors. Bioresour. Technol, 1998; 65: 175-190.
https://doi.org/10.1016/S0960-8524(98)00046-7

80. Shohei O., Kazuhiro I., Osami Y., Hideo T. Development of a biological mercury removal-recovery system. Biotechnol. Lett, 2000; 22(9): 783-788.

81. Silver S., Endo G., Nakamura K. Mercury in the environment and the laboratory. J. Jap. Soc. Water Environ, 1994; 17: 235-243.

82. Silver S., Phung L.T. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol, 1996; 50: 753-789.
https://doi.org/10.1146/annurev.micro.50.1.753
PMid:8905098

83. Slawson R.M., Van Dyke M.I., Lee H., Trevors J.T. Germanium and silver resistance, accumulation and toxicity in microorganisms. Plasmid, 1992; 27(1): 72-79.
https://doi.org/10.1016/0147-619X(92)90008-X

84. Solioz M., Stoyanov J. Copper homeostasis in Enterococcus hirae. FEMS Microbiology Reviews, 2003; 27(2-3): 183-195.
https://doi.org/10.1016/S0168-6445(03)00053-6

85. Sterritt R.M., Lester J.N. Interactions of haevy metals with bacteria. Sci. Total Environ, 1980; 14(2): 5-17.
https://doi.org/10.1016/0048-9697(80)90122-9

86. Suarez P., Garcia E. Mercury-induced polypeptide in a marine isolate coccus. Abstr. 99th Gen. Meet. Amer. Soc. Microbiol. Chicago (USA), 1999; P. 593.

87. Suzuki T., Miyata N., Horitsu H. et al. NAD(P)H-dependent chromium (VI) reductase of Pseudomonas ambigua G-1: a Cr (V) intermediate is formed during the reduction of Cr (VI) to Cr (III). J. Bacteriol, 1992; 174(16): 5340-5345.
https://doi.org/10.1128/jb.174.16.5340-5345.1992
PMid:1322884

88. Tamaki S., Frankenberger W.T. Environmental biochemistry of arsenic. Rev. Environ. Contam. Toxicol, 1992; 124: 79-110.
https://doi.org/10.1007/978-1-4612-2864-6_4
PMid:1732996

89. Taylor G.H. Biogeochemistry of uranium minerals. Biochemical Cycling of Mineral-forming Elements / P.A. Trudinger, D.J. Swaine. Elsevier science publishing, 1979: 485-514.
https://doi.org/10.1016/S0166-1116(08)71069-0

90. Tebo B.M. Metal precipitation by marine bacteria: potential for biotechnological applications. Genetic Engineering - Principles and Methods. Ed. J.K. Setlow. New York: Plenum Press, 1995: 231-263.

91. Tebo B.M., Obraztsova A.Y. Sulfate-reducing bacterium grows with Cr (VI), U (VI), Mn (IV), and Fe (III) as electron acceptors. FEMS Microbiology Letters, 1998; 162: 193-198.
https://doi.org/10.1111/j.1574-6968.1998.tb12998.x

92. Trevors J.T. Mercury methylation by bacteria. J. Basic. Microbiol, 1986; 26(8): 499-504.
https://doi.org/10.1002/jobm.3620260811
PMid:3553530

93. Trevors J.T., Stratton G.W., Gadd G.M. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol, 1986; 32(6): 447-464.
https://doi.org/10.1139/m86-085
PMid:3089567

94. Veeh H.H. Deposition of uranium from the ocean. Earth Planet. Sci. Lett, 1967; 3: 145-150.
https://doi.org/10.1016/0012-821X(67)90026-X

95. Viragh K., Szolnoki J. Bakteriumok szerepe a mecseki uranere keletkezeseben es kesobbi athalmozasaban. Foldt. Kozl, 1970; 100: 43-54.

96. White C., Sayer J.A., Gadd G.M. Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol. Rev, 1997; 20(3-4): 503-516.
https://doi.org/10.1111/j.1574-6976.1997.tb00333.x
PMid:9299717

97. Widdel F. The genus Desulfotomaculum / The Procaryotes / A. Balows, H.G. Truper, M. Dworkin, W. Harder, K.-H. Schleifer (ed.). Berlin: Springer, 1992: 1792-1799.

98. Widdel F., Bak F. Gram-negative mesophilic sulfate-reducing bacteria // The Procaryotes / A. Balows, H.G. Truper, M. Dworkin, W. Harder, K.-H. Schleifer (ed.). Berlin: Springer-Verlag, 1992; 3352-3378.
https://doi.org/10.1007/978-1-4757-2191-1_21

99. Xiong A., Jayaswal R.K. Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J. Bacteriol, 1988; 180(16): 4024-4029.

100. Xu Z., Lee S.Y. Display of polyhistidine peptides on the Escherichia coli cell surface by using outer membrane protein C as an anchoring motif. Appl. and Environ. Microbiol, 1999; 65(11): 5142-5147.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.