SPATIAL ORGANIZATION OF THE SOIL MACROFAUNA COMMUNITY OF AN OAK FOREST IN THE STEPPE ZONE OF UKRAINE

Olga Kunakh, Oleksandr Zhukov


DOI: http://dx.doi.org/10.30970/sbi.1803.779

Abstract


Background. Environmental impact assessments and the development of measures for the protection and sustainable use of ecosystems should take into account that not only steppe ecosystems but also forest, marsh, salt marsh and meadow ecosystems are referenced for the steppe zone. A comparative approach requires the study of reference ecosystems to understand how much a particular ecosystem has been transformed or how far it is from natural patterns in the restoration process. The soil macrofaunal community of the forest ecosystem of the right bank of the Samara River can be considered a reference for many forest ecosystems in the region. The aim of this study was to identify patterns of spatial organization of the soil macrofaunal community of an oak forest on the right bank of the Samara River.
Materials and Methods. A study was conducted in a deciduous woodland located in an oak forest on the right bank of the Samara River. The study area was divided into 5 transects, each consisting of 20 sampling points with a 2 m distance between rows. The samples of the soil macrofauna were taken from a single block of soil that was 25×25×30 cm deep and removed quickly. Vascular plant species lists were recorded for each 2×2 m subplot. The soil penetration resistance and electrical conductivity were measured. Soil faunal trophic activity was assessed by means of a bait lamina test.
Results and Discussion. The spatial structure of the community is complex in terms of hierarchy. The driver of the broad-scale component of spatial variation in the community is the properties of the topsoil, mainly the density of the litter. Vegetation cover forms a broad component of the spatial variation in soil macrofauna. An important factor in structuring ecological space is the location of trees. The pure spatial pattern is represented by broad-, medium-, and fine-scale components.
Conclusion. The soil macrofaunal community of an oak forest on the slope of the right bank of a steppe river has a high level of abundance and taxonomic and ecological diversity. The spatial distribution of trees forms a broad-scale component of variation in the soil macrofaunal community, and herbaceous cover forms a medium-scale component. The fine-scale component of community variation is due to neutral factors.


Keywords


diversity, spatial ecology, hierarchical organization, pattern, community ordination, procrust analysis, environmental impact assessment

Full Text:

PDF

References


Belgard, A. L. (1950). Lesnaya rastitelnost yugo-vostoka USSR [Forest vegetation of the southeast of the Ukrainian SSR]. Kiev: Kiev State University named after T. G. Shevchenko. (In Russian)
Google Scholar

Blanchart, E. (1992). Restoration by earthworms (megascolecidae) of the macroaggregate structure of a destructured savanna soil under field conditions. Soil Biology and Biochemistry, 24(12), 1587-1594. doi:10.1016/0038-0717(92)90155-q
CrossrefGoogle Scholar

Borcard, D., & Legendre, P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153(1-2), 51-68. doi:10.1016/S0304-3800(01)00501-4
CrossrefGoogle Scholar

Bottinelli, N., Jouquet, P., Capowiez, Y., Podwojewski, P., Grimaldi, M., & Peng, X. (2015). Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? Soil and Tillage Research, 146, 118-124. doi:10.1016/j.still.2014.01.007
CrossrefGoogle Scholar

Capowiez, Y., Bottinelli, N., Sammartino, S., Michel, E., & Jouquet, P. (2015). Morphological and functional characterization of the burrow systems of six earthworm species (Lumbricidae). Biology and Fertility of Soils, 51(7), 869-877. doi:10.1007/s00374-015-1036-x
CrossrefGoogle Scholar

Capowiez, Y., Sammartino, S., & Michel, E. (2014). Burrow systems of endogeic earthworms: effects of earthworm abundance and consequences for soil water infiltration. Pedobiologia, 57(4-6), 303-309. doi:10.1016/j.pedobi.2014.04.001
CrossrefGoogle Scholar

Castellanos-Navarrete, A., Rodríguez-Aragonés, C., de Goede, R. G. M., Kooistra, M. J., Sayre, K. D., Brussaard, L., & Pulleman, M. M. (2012). Earthworm activity and soil structural changes under conservation agriculture in central Mexico. Soil and Tillage Research, 123, 61-70. doi:10.1016/j.still.2012.03.011
CrossrefGoogle Scholar

Chang, L.-W., Zelený, D., Li, C.-F., Chiu, S.-T., & Hsieh, C.-F. (2013). Better environmental data may reverse conclusions about niche- and dispersal-based processes in community assembly. Ecology, 94(10), 2145-2151. doi:10.1890/12-2053.1
CrossrefPubMedGoogle Scholar

Chudomelová, M., Zelený, D., & Li, C.-F. (2017). Contrasting patterns of fine-scale herb layer species composition in temperate forests. Acta Oecologica, 80, 24-31. doi:10.1016/j.actao.2017.02.003
CrossrefGoogle Scholar

Collis-George, N. (1959). The physical environment of soil animals. Ecology, 40(4), 550-557. doi:10.2307/1929807
CrossrefGoogle Scholar

Daigle, R. M., Metaxas, A., Balbar, A. C., McGowan, J., Treml, E. A., Kuempel, C. D., Possingham, H. P., & Beger, M. (2020). Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. Methods in Ecology and Evolution, 11(4), 570-579. doi:10.1111/2041-210x.13349
CrossrefGoogle Scholar

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., & Wagner, H. H. (2018). Adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-2. Retrieved from https://CRAN.R-project.org/package=adespatial; https://rdrr.io/rforge/adespatial

Emshanov, D. G. (1999). Metody prostranstvennoj ekologii v izuchenii lesnyh ekosistem [The methods of spatial ecology in the study of forest ecosystems]. Kiev: Mercury Globe's Ukraine. (In Russian)
Google Scholar

Frazão, J., de Goede, R. G. M., Capowiez, Y., & Pulleman, M. M. (2019). Soil structure formation and organic matter distribution as affected by earthworm species interactions and crop residue placement. Geoderma, 338, 453-463. doi:10.1016/j.geoderma.2018.07.033
CrossrefGoogle Scholar

Frouz, J., Pižl, V., & Tajovský, K. (2007). The effect of earthworms and other saprophagous macrofauna on soil microstructure in reclaimed and un-reclaimed post-mining sites in Central Europe. European Journal of Soil Biology, 43, S184-S189. doi:0.1016/j.ejsobi.2007.08.033
CrossrefGoogle Scholar

Fujimaki, R., Sato, Y., Okai, N., & Kaneko, N. (2010). The train millipede (Parafontaria laminata) mediates soil aggregation and N dynamics in a Japanese larch forest. Geoderma, 159(1-2), 216-220. doi:10.1016/j.geoderma.2010.07.014
CrossrefGoogle Scholar

Gavinelli, F., Barcaro, T., Csuzdi, C., Blakemore, R. J., Marchan, D. F., De Sosa, I., Dorigo, L., Lazzarini, F., Nicolussi, G., Dreon, A. L., Toniello, V., Pamio, A., Squartini, A., Concheri, G., Moretto, E., & Paoletti, M. G. (2018). Importance of large, deep-burrowing and anecic earthworms in forested and cultivated areas (vineyards) of northeastern Italy. Applied Soil Ecology, 123, 751-774. doi:10.1016/j.apsoil.2017.07.012
CrossrefGoogle Scholar

Gholami, S., Sayad, E., Gebbers, R., Schirrmann, M., Joschko, M., & Timmer, J. (2016). Spatial analysis of riparian forest soil macrofauna and its relation to abiotic soil properties. Pedobiologia, 59(1-2), 27-36. doi:10.1016/j.pedobi.2015.12.003
CrossrefGoogle Scholar

Gorban, V., Huslystyi, A., Kotovych, O., & Yakovenko, V. (2020). Changes in physical and chemical properties of calcic chernozem affected by Robinia pseudoacacia and Quercus robur plantings. Ekológia (Bratislava), 39(1), 27-44. doi:10.2478/eko-2020-0003
CrossrefGoogle Scholar

Jezierska-Tys, S., Wesołowska, S., Gałązka, A., Joniec, J., Bednarz, J., & Cierpiała, R. (2020). Biological activity and functional diversity in soil in different cultivation systems. International Journal of Environmental Science and Technology, 17(10), 4189-4204. doi:10.1007/s13762-020-02762-5
CrossrefGoogle Scholar

Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. In: F. B. Samson & F. L. Knopf (Eds.), Ecosystem management (pp. 130-147). New York: Springer. doi:10.1007/978-1-4612-4018-1_14
CrossrefGoogle Scholar

Jongmans, A. G., Pulleman, M. M., Balabane, M., van Oort, F., & Marinissen, J. C. Y. (2003). Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Applied Soil Ecology, 24(3), 219-232. doi:10.1016/s0929-1393(03)00072-6
CrossrefGoogle Scholar

Jongmans, A. G., Pulleman, M. M., & Marinissen, J. C. Y. (2001). Soil structure and earthworm activity in a marine silt loam under pasture versus arable land. Biology and Fertility of Soils, 33(4), 279-285. doi:10.1007/s003740000318
CrossrefGoogle Scholar

Kozlovskyi, M. P. (2009). Fitonematody nazemnykh ekosystem Karpatskoho rehionu [Phytonematodes of terrestrial ecosystems of the Carpathian region]. Lviv: Manuskrypt. (In Ukrainian)
Google Scholar

Kudureti, A., Zhao, S., Zhakyp, D., & Tian, C. (2023). Responses of soil fauna community under changing environmental conditions. Journal of Arid Land, 15(5), 620-636. doi:10.1007/s40333-023-0009-4
CrossrefGoogle Scholar

Kunakh, O. M., Yorkina, N. V., Budakova, V. S., & Zhukova, Y. O. (2021). An ecomorphic approach to assessing the biodiversity of soil macrofauna communities in urban parks. Agrology, 4(3), 114-130. doi:10.32819/021015 (In Ukrainian)
CrossrefGoogle Scholar

Kunakh, O., Zhukova, Y., Yakovenko, V., & Zhukov, O. (2023). The role of soil and plant cover as drivers of soil macrofauna of the Dnipro River floodplain ecosystems. Folia Oecologica, 50(1), 16-43. doi:10.2478/foecol-2023-0002
CrossrefGoogle Scholar

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O. W., & Dhillion, S. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Science, 33(4), 159-193.
Google Scholar

Legendre, L., & Legendre, P. (2012). Numerical ecology (Vol. 24, 3rd ed.). Elsevier. doi:10.1016/b978-0-444-53868-0.50018-6
CrossrefGoogle Scholar

Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129(2), 271-280. doi:10.1007/s004420100716
CrossrefPubMedGoogle Scholar

Martins da Silva, P., Berg, M. P., Serrano, A. R. M., Dubs, F., & Sousa, J. P. (2012). Environmental factors at different spatial scales governing soil fauna community patterns in fragmented forests. Landscape Ecology, 27(9), 1337-1349. doi:10.1007/s10980-012-9788-2
CrossrefGoogle Scholar

Maslikova, K. P. (2018). Eсomorphic structure of the soil macrofauna communities of technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 26(2), 85-91. doi:10.15421/011813
CrossrefGoogle Scholar

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2018). Community Ecology Package. R package version 2.5-2. Retrieved from https://cran.r-project.org/package=vegan

Pakhomov, O. Y., Kunakh, O. M., Babchenko, A. V., Fedushko, M. P., Demchuk, N. I., Bezuhla, L. S., & Tkachenko, O. S. (2019). Temperature effect on the temporal dynamic of terrestrial invertebrates in technosols formed after reclamation at a postmining site in Ukrainian steppe drylands. Biosystems Diversity, 27(4), 322-328. doi:10.15421/011942
CrossrefGoogle Scholar

Pérès, G., Bellido, A., Curmi, P., Marmonier, P., & Cluzeau, D. (2010). Relationships between earthworm communities and burrow numbers under different land use systems. Pedobiologia, 54(1), 37-44. doi:10.1016/j.pedobi.2010.08.006
CrossrefGoogle Scholar

Phillips, D. H., & FitzPatrick, E. A. (1999). Biological influences on the morphology and micromorphology of selected Podzols (Spodosols) and Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Geoderma, 90(3-4), 327-364. doi:10.1016/s0016-7061(98)00121-9
CrossrefGoogle Scholar

Piron, D., Pérès, G., Hallaire, V., & Cluzeau, D. (2012). Morphological description of soil structure patterns produced by earthworm bioturbation at the profile scale. European Journal of Soil Biology, 50, 83-90. doi:10.1016/j.ejsobi.2011.12.006
CrossrefGoogle Scholar

Pollierer, M. M., Klarner, B., Ott, D., Digel, C., Ehnes, R. B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., & Scheu, S. (2021). Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forestland use. Oecologia, 196(1), 195-209. doi:10.1007/s00442-021-04910-1
CrossrefPubMedPMCGoogle Scholar

Rao, C. (1964). The use and interpretation of principal component analysis in applied research. The Indian Journal of Statistics, Series A, 26(4), 329-358.
Google Scholar

Rozen, A., Sobczyk, Ł., Liszka, K., & Weiner, J. (2010). Soil faunal activity as measured by the bait-lamina test in monocultures of 14 tree species in the Siemianice common-garden experiment, Poland. Applied Soil Ecology, 45(3), 160-167. doi:10.1016/j.apsoil.2010.03.008
CrossrefGoogle Scholar

Sanborn, P., & Pawluk, S. (1989). Microstructure diversity in Ah horizons of black chernozemic soils, Alberta and British Columbia (Canada). Geoderma, 45(3-4), 221-240. doi:10.1016/0016-7061(89)90008-6
CrossrefGoogle Scholar

Schloter, M., Dilly, O., & Munch, J. C. (2003). Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 98(1-3), 255-262. doi:10.1016/s0167-8809(03)00085-9
CrossrefGoogle Scholar

Simmons, W., Dávalos, A., & Blossey, B. (2015). Forest successional history and earthworm legacy affect earthworm survival and performance. Pedobiologia, 58(4), 153-164. doi:10.1016/j.pedobi.2015.05.001
CrossrefGoogle Scholar

Sterzyńska, M., Shrubovych, J., & Kaprus, I. (2014). Effect of hydrologic regime and forest age on Collembola in riparian forests. Applied Soil Ecology, 75, 199-209. doi:10.1016/j.apsoil.2013.11.010
CrossrefGoogle Scholar

Truman, J. W. (2019). The evolution of insect metamorphosis. Current Biology, 29(23), R1252-R1268. doi:10.1016/j.cub.2019.10.009
CrossrefPubMedGoogle Scholar

Tsaryk, Y. V. (2021). Interecosystem relation (an attempt of classification). Studia Biologica, 15(4), 117-124. doi:10.30970/sbi.1504.665
CrossrefGoogle Scholar

Tsaryk, Y. V., Reshetylo, O. S., & Tsaryk, I. Y. (2019). Key species as centers of the biodiversity development. Studia Biologica, 13(1), 161-168. doi:10.30970/sbi.1301.590
CrossrefGoogle Scholar

Tutova, G. F., Kunakh, O. M., Yakovenko, V. M., & Zhukov, O. V. (2023). The importance of relief for explaining the diversity of the floodplain and terrace soil cover in the Dnipro River valley: the case of the protected area within the Dnipro-Orylskiy Nature Reserve. Biosystems Diversity, 31(2), 177-190. doi:10.15421/012319
CrossrefGoogle Scholar

van Vliet, P. C. J., West, L. T., Hendrix, P. F., & Coleman, D. C. (1993). The influence of Enchytraeidae (Oligochaeta) on the soil porosity of small microcosms. Geoderma, 56(1-4), 287-299. doi:10.1016/0016-7061(93)90118-5
CrossrefGoogle Scholar

Warren, M. W., & Zou, X. (2002). Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico. Forest Ecology and Management, 170(1-3), 161-171. doi:10.1016/S0378-1127(01)00770-8
CrossrefGoogle Scholar

Westhoff, V., & Van Der Maarel, E. (1978). The braun-blanquet approach. In R. H. Whittaker (Ed.), Classification of plant communities (Vol. 5-1, pp. 287-399). Dordrecht: Springer Netherlands. doi:10.1007/978-94-009-9183-5_9
CrossrefGoogle Scholar

Yakovenko, V. (2017). Fractal properties of coarse/fine-related distribution in forest soils on colluvium. In D. Dent & Y. Dmytruk (Eds.), Soil science working for a living (pp. 29-42). Cham: Springer. doi:10.1007/978-3-319-45417-7_3
CrossrefGoogle Scholar

Yakovenko, V., & Zhukov, O. (2021). Zoogenic structure aggregation in steppe and forest soils. In Y. Dmytruk & D. Dent (Eds.), Soils under stress (pp. 111-127). Cham: Springer. doi:10.1007/978-3-030-68394-8_12
CrossrefGoogle Scholar

Yorkina, N., & Budakova, V. (2020). The hemeroby of soil macrofauna: spatial-ecological transformation of the communty at the ecosystem level. Agrology, 3(2), 104-121.
Google Scholar

Yorkina, N., Zhukov, O., & Chromysheva, O. (2019). Potential possibilities of soil mesofauna usage for biodiagnostics of soil contamination by heavy metals. Ekológia (Bratislava), 38(1), 1-10. doi:10.2478/eko-2019-0001
CrossrefGoogle Scholar

Zanella, A., Ponge, J.-F., Jabiol, B., Sartori, G., Kolb, E., Gobat, J.-M., Bayon, R.-C. Le, Aubert, M., Waal, R. De, Delft, B. Van, Vacca, A., Serra, G., Chersich, S., Andreetta, A., Cools, N., Englisch, M., Hager, H., Katzensteiner, K., Brêthes, A., … Viola, F. (2018). Humusica 1, article 4: Terrestrial humus systems and forms - specific terms and diagnostic horizons. Applied Soil Ecology, 122, 56-74. doi:10.1016/j.apsoil.2017.07.005
CrossrefGoogle Scholar

Zhukov, O., Kunah, O., Dubinina, Y., & Novikova, V. (2018). The role of edaphic and vegetation factors in structuring beta diversity of the soil macrofauna community of the Dnipro river arena terrace. Ekológia (Bratislava), 37(3), 301-327. doi:10.2478/eko-2018-0023
CrossrefGoogle Scholar

Zhukov, O., Kunah, O., Dubinina, Y., Zhukova, Y., & Ganzha, D. (2019). The effect of soil on spatial variation of the herbaceous layer modulated by overstorey in an Eastern European poplar-willow forest. Ekológia (Bratislava), 38(3), 253-272. doi:10.2478/eko-2019-0020
CrossrefGoogle Scholar

Zhukov, O. V., Zadorozhna, G. O., Maslikova, K. P., Andrusevych, K. V., & Lyadskaya, I. V. (2017). Ekolohiia tekhnozemiv [Tehnosols ecology]. Dnipro: Zhurfond. (In Ukrainian)
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Olga Kunakh, Oleksandr Zhukov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.