GENERAL CHARACTERISTICS OF SHOOT SYSTEM FORMATION OF SALIX HERBACEA L. IN HIGH-MOUNTAIN ZONE OF THE UKRAINIAN CARPATHIANS

A. I. Prokopiv, S. O. Volgin


DOI: http://dx.doi.org/10.30970/sbi.0303.055

Abstract


The structural features of Salix herbacea L. shoot system are determined. These organs provide its adaptation to the high mountains growing conditions. The prostrate growth-form and xylorhyzome active-vegetative-mobile life form are presented by long-term shoot parts and less long-term ground shoot parts that are horizontally placed. Despite the fact that S. herbacea is a wood hamephyte, it comes nearer to geophytes on the basis of the shoots type.


Keywords


biomorphology, vegetative organs, shoot system, Salix herbacea

References


1. Гетманец И.А. Биоморфы ив (Salix L.) как индикаторы некоторых субстратно-экологических групп. Биоморфологические исследования в современной ботанике: Матер. междунар. науч. конф., Владивосток, 2007. Владивосток, 2007.

2. Дервиз-Соколова Т.Г. Анатомо-морфологическое строение Salix phlebophylla и Salix rotundifolia. Бюл. МОИП, Отд. биол, 1982; 71(3): 124-128.

3. Колищук В.Г. Стелющиеся древесные растения (эколого-морфологический анализ): Автореф. дис. … д-ра биол. наук. Ленинград, 1971.

4. Мазуренко М.Т. Биоморфологические адаптации растений Крайнего Севера. Москва, 1986.

5. Прокопів А.І. Значення морфофункціональної диференціації пагонів при виділенні груп моделей пагоноутворення // Матер. ХІІ з'їзду Українського ботан. т-ва (Одеса, 15-18 травня 2006 р.) Одеса, 2006. С. 487.

6. Серебряков И.Г. Экологическая морфология растений. Москва, 1962.

7. Серебрякова Т.И. Об основных архитектурных моделях травянистых многолетников и модусах их преобразования. Бюл. Моск. о-ва испыт. природы. Отд. биол, 1977; 82(5): 112-128.

8. Скворцов А.К. Ивы СССР: Систематический и географический обзор. М., 1968.

9. Alsos I.G., Alm T., Normand S., Brochmann Ch. Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modeling. Global Ecology & Biogeography, 2009: 18(2): 223-239.
https://doi.org/10.1111/j.1466-8238.2008.00439.x

10. Beerling D.J. Biological flora of the British Isles: Salix herbacea L. Journ. of Ecology, 1998; 86: 872-895.
https://doi.org/10.1046/j.1365-2745.1998.8650872.x

11. Billings W.D., Bliss L.C. An alpine snow bank environment and its effects on vegetation, plant development and productivity. Ecology, 1959; 40: 388-397.
https://doi.org/10.2307/1929755

12. Binns W.W., Blunden G. Comparative anatomy of Salix species and hybrids. Botan. Journ. of Linnean Society, 1980; 81: 205-214.
https://doi.org/10.1111/j.1095-8339.1980.tb01673.x

13. Bliss L.C. A comparison of plant development in microenvironments of arctic and alpine tundras. Ecological Monographs, 1956; 26: 303-337.
https://doi.org/10.2307/1948544

14. Du Rietz G.E. Phytogeographic Excursion to the Surroundings of Lake Torneträsk in Torne Lappmark (Northern Sweden). Excursion guide. Seventh Intern. Botan. Congr. Stockholm, 1950.

15. Ellenberg H. Vegetation Ecology of Central Europe. 4th edn. Cambridge University Press. Cambridge, 1988.

16. Gjaerevoll O. The plant communities of the Scandinavian alpine snow-beds. Det Kunglige Norske videnskabers selskabs skrifter. Trondheim, 1956.

17. Harper J.L. Population biology of plants. London, 1977.

18. Jenik J., Kubikova J. Contribution to the ecology of Salix herbacea L. Journ. of Indian Botany, 1962; XLII: 281-290.

19. Kikvidze Z, Pugnaire F.I., Brooker R.W. et al. Linking patterns and processes in alpine plant communities: a global study. Ecology, 2005; 86: 1395-1400.
https://doi.org/10.1890/04-1926

20. Körner C. Alpine plant life. 2nd edn. Berlin, 2003.
https://doi.org/10.1007/978-3-642-18970-8

21. Kozlowski T.T. Shoot growth in woody plants. Botanical Review, 1964; 30: 335-392.
https://doi.org/10.1007/BF02858538

22. Leopold L.B. Trees and streams: the efficiency of branching patterns. Journ. of Theoretical Biology, 1971; 31: 339-354.
https://doi.org/10.1016/0022-5193(71)90192-5

23. Mooney H.A., Billings W.D. The annual carbohydrate cycle of alpine plants as related to growth. Amer. Journ. of Botany, 1960; 47: 594-598.
https://doi.org/10.1002/j.1537-2197.1960.tb14911.x

24. Moser D., Dullinger S., Englisch T et al. Environmental determinants of vascular plant species richness in the Austrian Alps. Journ. of Biogeography, 2005; 32: 1117-1127.
https://doi.org/10.1111/j.1365-2699.2005.01265.x

25. Preston C.D., Hill M.O. The geographical relationships of British and Irish vascular plants. Botan. Journ. of Linnean Society, 1997; 124: 1-120.
https://doi.org/10.1006/bojl.1996.0084

26. Rauh W. Beiträge zur Morphologie und Biologie der Holzgewächse. Nova Acta Acad. Leop.-Carol, 1937; 5: 30 s.

27. Raunkiaer C. The life forms of plants and statistical plant geography. Oxford, 1934.

28. Reisch Сh., Schurm S., Poschlod P. Spatial Genetic Structure and Clonal Diversity in an Alpine Population of Salix herbacea (Salicaceae). Annals of Botany, 2007; 1-5.

29. Resvoll T.R. Om planter som passer til kort og kold sommer. Arkiv for mathematik og naturiidenskab, 1917; 35: 1-224.

30. Stöcklin J. Environment, morphology and growth of clonal plants an overview. Botanica Helvetica, 1992; 102: 3-21.

31. Scharfetter R. Biographien von Pflanzensippen. Wien, 1953.
https://doi.org/10.1007/978-3-662-26581-9

32. White J. Demographic factors in populations of plants / Demography and Evolution in Plant Populations. Botanical Monographs, 1980; 15: 21-48.

33. Wijk S. Performance of Salix herbacea in an alpine snow bed gradient. Journ. of Ecology, 1986а; 74: 675-684.
https://doi.org/10.2307/2260390

34. Wijk S. Influence of climate and age on annual shoot increment in Salix herbacea. Journ. of Ecology, 1986b; 74: 675-684.
https://doi.org/10.2307/2260390


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.