CHANGES IN MOSS ENZYMES OF ANTIOXIDANT DEFENSE UNDER THE ACTION OF COPPER AND ZINC IONS

O. L. Baik


DOI: http://dx.doi.org/10.30970/sbi.0303.077

Abstract


Changes in activity of moss enzymes of antioxidant defense under the 36-hour duration action of 1.0−100.0 µM of copper and zinc sulfates were analysed in Funaria hygrometrica Hedw. аnd Amblystegium serpens (Hedw.) Schimp. It has been shown that high concentrations of Cu2+ and Zn2+essentially change the activity of main enzymes of moss antioxidative defense enzymes such as SOD, peroxidase and catalase. The analysis of these enzymes points to differential sensibility of the investigated moss species to copper sulfate and zinc sulfate action.


Keywords


mosses, enzymes of antioxidative defense: superoxide dismutase, peroxidase, catalase

References


1. Иванов В.Б., Быстрова Д.И., Серегин И.В. Сравнение влияния тяжелых металлов на рост корня в связи с проблемой специфичности и избирательности их действия. Физиология растений, 2003; 50: 445-454.

2. Королюк М.А., Иванова Л.И., Майорова И.Г., Токарев В.Е. Метод определения активности каталазы. Лабораторное дело, 1988; 1: 16-19.

3. Лукаткин А.С., Башмаков Д.И., Кипайкина Н.В. Протекторная роль обработки тиидиазуроном проростков огурца при действии тяжелых металлов и охлаждения. Физиология растений, 2003; 50: 346-348.

4. Рачковская М.М., Ким Л.О. Изменение активности некоторых оксидаз как показатель адаптации растений к условиям промышленного загрязнения. В кн.: Газоустойчвость растений / Под ред. В.С. Николаевского. Новосибирск: Наука, 1980: 117-126.

5. Стальная Н.Д., Гаришвили Т.Г. Метод определения МДА с помощью ТБК. В кн.: Современние методы в биохимии. Москва: Медицина, 1977. 66 с.

6. Тарчевский И.А. Сигнальные системы клеток растений. Москва: Наука, 2002. 294 с.

7. Чевари С., Андян Т., Штренгер Я. Определение антиоксидантных параметров крови и их диагностическое значение в пожилом возрасте. Лабораторное дело, 1991; 10: 9-13.

8. Чиркова Т.В. Физиологические основы устойчивости растений. Санкт-Петербург: Изд-во Санкт-Петербург. ун-та, 2002. 244 с.

9. Bredford W.A. A simple method for protein test. Annal. Biochem, 1976; 72: 248-252.
https://doi.org/10.1006/abio.1976.9999
PMid:942051

10. De Vos C.H.R., Schat H., de Waal M.A.M. et al. Increased resistence to coopper-indused damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol. Plant, 1991; 82: 523-528.
https://doi.org/10.1034/j.1399-3054.1991.820407.x

11. Gechev T., Gadjiev I., van Breusgem E. et al. Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol. Life Sci, 2002; 59: 708-714.
https://doi.org/10.1007/s00018-002-8459-x
PMid:12022476

12. Merzlyak M.N., Hendry G.A. Free radical metabolism, pigment degradation and lipid peroxidation in leaves during senescence. Proc. Royal Soc, Edinbourgh, 1994; 102B: 459-471.
https://doi.org/10.1017/S0269727000014482

13. Mitteler R. Oxidative stress, antioxidants, and stress tolerance. Trends Sci, 2002; 7: 405-409.
https://doi.org/10.1016/S1360-1385(02)02312-9

14. Nakano Y., Asada K. Hydrogen peroxide is scavenged by acrobate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867-880.

15. Panda S.K. Heavy metal phytotoxicity induces oxidative stress in moss, Taxithelium sp. Curr. Sci, 2003; 84: 631-663.

16. Panda S.K., Chaudhury I., Khan M.N. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol. Plant, 2003; 46: 289-294.
https://doi.org/10.1023/A:1022871131698

17. Prasad K.V.S.K., Saradhi P.P., Sharmila P. Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environ. Exp. Bot, 1999; 42: 1-10.
https://doi.org/10.1016/S0098-8472(99)00013-1

18. Ramesh S.A., Shin R., Eide D.J., Schachman D.P. Differential metal selectivity and gene expression of two zink transporters from rice. Plant Physiol, 2003; 133: 126-134.
https://doi.org/10.1104/pp.103.026815
PMid:12970480 PMCid:PMC196588

19. Schuetzenduebel A., Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot, 2002; 53: 1351-1365.
https://doi.org/10.1093/jexbot/53.372.1351
PMid:11997381

20. Smirnoff N. Ascorbic acid: methabolism and function of a multi-facetted molecule. Curr. Opin. Plant Biol, 2000; 3: 229-235.
https://doi.org/10.1016/S1369-5266(00)00069-8

21. Sudhakar C., Lakshmi A., Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes o mulberry (Morus alba L.) under NaCl salinity. Plant Sci, 2002; 161: 613-619.
https://doi.org/10.1016/S0168-9452(01)00450-2


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.