THE ROLE OF ENDOPLASMIC Са2+-FUNCTIONAL UNIT IN P2Y-RECEPTORS SIGNAL TRANSDUCTION PROCESSES IN CHIRONOMUS PLUMOSUS LARVAE SECRETORY CELLS OF SALIVARY GLANDS

O. Yu. Velykopolska, V. V. Manko


DOI: http://dx.doi.org/10.30970/sbi.0303.052

Abstract


ІP3-dependent Са2+-channels inhibitor 2-АPB in low concentrations (1–10 µmol/l) causes increase of stored Са2+ content in salivary glands of Chironomus plumosus larvae, both incubated as in nominally calcium-free medium and in the medium with physiological Са2+ concentration. This effect is caused by inhibition of ІP3-dependent Са2+-channels, decreasing of Ca2+-release from endoplasmic reticulum which results in shift of endoplasmic Са2+-functional unit equilibrium in the direction of Са2+ accumulation in the intracellular stores. After incubation of glands with 2-APB in hypercalcium medium decrease of Са2+ content in secretory cells was observed. Presence of high concentration of 2-APB (20–100 µmol/l) in incubation medium leads to decrease of Са2+ content in secretory cells independently of Са2+ concentration. This effect most probably is caused by the inhibition of SERCA Са2+-pump, which is a part of endoplasmic Са2+-functional unit, decrease of Ca2+ uptake resulting in shift of equilibrium in direction of release of stored Са2+. Application of ATP or ADP in the nominal Ca2+-free medium induces a decrease of Са2+ content in the secretory cells as a result of P2Y-receptors activation. At the same time, presence of 2-APB (10 µmol/l) in nominally Ca2+-free medium abolishes the ATP-induced Са2+ release of Са2+, and did not influence ADP-induced decrease of Са2+ concentration in the secretory cells. According to the obtained data, we assume the presence of two subtypes of Р2Y-receptors in secretory cells of Chironomus plumosus larvae salivary glands. Receptors of the first subtype (P2YATP) have higher affinity to ATP and are coupled with IP3-dependent Са2+-channels. Activation of endoplasmic Са2+-functional unit is a basic mechanism of the signal transduction following activation of this subtype of receptors. Receptors of the second subtype (P2YADP) have higher affinity to ADP and exert their functions through other mechanism. Addition of 2-APB to hipercalcium media abolishes the ATP- and ADP-induced changes in Са2+ content in glands' tissue due to changes in the integrity of endoplasmic Са2+-functional unit.


Keywords


2-АPB, P2Y and P2X, ІP3-dependent Са2+-channels, Са2+-pump of endoplasmic reticulum, endoplasmic Са2+-functional unit, exocrine secretory cells

References


1. Деркач М.П., Гумецький Р.Я., Чабан М.Є. Курс варіаційної статистики. Київ: Вища школа, 1977. 206 с.

2. Костерин С.А. Транспорт кальция в гладких мышцах. Киев: Наук. думка, 1990. - 216 с.

3. Манько В.В. Методологічні підходи до дослідження Na+-Ca2+-обміну в екзокринних секреторних клітинах. Укр. біохім. журн, 2006; 78(1): 43-62.

4. Манько В.В. Концепція Cа2+-функціональних одиниць у застосуванні до секреторних клітин слинних залоз личинки Chironomus plumosus. Біологічні студії / Studia Biologica, 2008; 2(1): 33-50.
https://doi.org/10.30970/sbi.0201.014

5. Манько В.В. Системи трансмембранного транспортування кальцію у секреторних клітинах слинних залоз личинки Chironimus plumosus Linnaeus. Автореф. дис. … д-ра біол. наук. Київ, 2008. 44 с.

6. Манько В., Великопольська О. Ідентифікація пуринових рецепторів у секреторних клітинах слинних залоз личинки комара-дергуна. Вісн. Львів. ун-ту. Сер. біол, 2005; 40: 134-139.

7. Манько В.В., Бичкова С.В., Клевець М.Ю. Ідентифікація каналів вивільнення Са2+ у секреторних клітинах слинних залоз личинки комара-дергуна. Укр. біохім. журн, 2004; 76(1): 65-71.

8. Манько В.В., Клевець М.Ю., Федірко Н.В., Король Т.В. Вплив хлорпромазину на Са2+-транспортні системи плазматичної мембрани секреторних клітин слинної залози личинки Chironomus plumosus L. Укр. біохім. журн, 2000; 72 (2): 36-41.

9. Abbracchio M.P., Burnstock G., Boeynaems J.-M. et al. International union of pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev, 2006; 58: 281-341.
https://doi.org/10.1124/pr.58.3.3
PMid:16968944 PMCid:PMC3471216

10. Bootman M.D., Collins T.J., Mackenzie L. et al. 2-Aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J, 2002; 16: 1145-1150.
https://doi.org/10.1096/fj.02-0037rev
PMid:12153982

11. Burnstock G. Purinergic signalling. Br. J. Pharmacol, 2006; 147(1): S172-S181.
https://doi.org/10.1038/sj.bjp.0706429
PMid:16402102 PMCid:PMC1760723

12. Burnstock G. Unresolved issues and controversies in purinergic signalling. J. Physiol, 2008; 586(14): 3307-3312.
https://doi.org/10.1113/jphysiol.2008.155903
PMid:18499722 PMCid:PMC2538804

13. Burnstock G., Williams M. P2 purinergic receptors: modulation of cell function and therapeutic potential. J. Pharmacol. Experiment. Therap, 2000; 295(3): 862-869.

14. Cattaneo M., Gachet C. ADP receptors and clinical bleeding disorders. Arterioscler. Thromb. Vasc. Biol, 1999; 19: 2281-2285.
https://doi.org/10.1161/01.ATV.19.10.2281

15. Honda S., Sasaki Y., Ohsawa K. et al. Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci, 2001; 21(6): 1975-1982.
https://doi.org/10.1523/JNEUROSCI.21-06-01975.2001

16. Jacobson K.A., Hoffmann C., Kim Y.C. et al. Molecular recognition in P2 receptors: ligand development aided by molecular modeling and mutagenesis. Prog. Brain Res, 1999; 120: 119-132.
https://doi.org/10.1016/S0079-6123(08)63550-5

17. Jacobson K.A., Kim S-K., Costanzi S., Gao Z-G. Purine receptors: GPCR structure and agonist design. Molecular Interventions, 2004; 4: 337-347.
https://doi.org/10.1124/mi.4.6.7
PMid:15616163 PMCid:PMC3418328

18. Khakh B.S., Burnstock G., Kennedy C. et al. International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol. Rev, 2001; 53: 107-118.

19. Lazarowski E.R., Boucher R.C., Harden T.K. Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol. Pharmacol, 2003; 64: 785-795.
https://doi.org/10.1124/mol.64.4.785
PMid:14500734

20. Maruyama T., Kanaji T., Nakade S. et al. 2APB, 2-aminoethoxydiphenyl borate, a membranepenetrable modulator of Ins(1,4,5)P-3-induced Ca2+ release. Japan. J. Biochem, 1997; 122: 498-505.
https://doi.org/10.1093/oxfordjournals.jbchem.a021780
PMid:9348075

21. Missiaen L., Callewaert G., De Smedt H., Parys J.B. 2-aminoethoxydiphenyl borate affects the inositol 1,4,5-trisphosphate receptor, the intracellular Ca2+ pump and the non-specific leak from the non-mitochondrial Ca2+ stores in permeabilised A7r5 cells. Cell Calcium, 2001; 29: 111-116.
https://doi.org/10.1054/ceca.2000.0163
PMid:11162848

22. Nguyen T.D., Meichle S., Kim U.S. et al. P2Y(11), a purinergic receptor acting via cAMP, mediates secretion by pancreatic. Am. J. Physiol. Gastrointest. Liver Physiol, 2001; 280(5): G795-804.
https://doi.org/10.1152/ajpgi.2001.280.5.G795
PMid:11292586

23. North R.A. Molecular physiology of P2X receptors. Physiol. Rev, 2002; 82: 1013-1067.
https://doi.org/10.1152/physrev.00015.2002
PMid:12270951

24. Ralevic V., Burnstock G. Receptors for purines and pyrimidines. Pharmacol. Rev, 1998; 50: 413-492.

25. Tribe R.M, Borin M.L., Blaustein M.P. Functionally and spatially distinct Ca2+ stores are revealed in cultured vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA, 1994; 91: 5908-5912.
https://doi.org/10.1073/pnas.91.13.5908
PMid:8016087 PMCid:PMC44106

26. Vallon V. P2 receptors in the regulation of renal transport mechanisms. Am. J. Physiol. Renal. Physiol, 2008; 294: F10-F27.
https://doi.org/10.1152/ajprenal.00432.2007
PMid:17977905


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.