GENOMIC MODIFICATION OF EUKARYOTES USING BAC RECOMBINEERING

A. O. Tsyrulnyk, V. V. Snitynsky, R. S. Stoika


DOI: http://dx.doi.org/10.30970/sbi.0303.047

Abstract


Introduction of modified genes into eukaryotic genome gives new opportunities for investigations of biological processes. Gene expression is controlled by specific regulator regions of different size and localization in genome. Most of them are poorly studied. Thus, a transgene construct is usually introduced together with a short ubiquity promoter region. Since all original regulator regions are lost, it makes difficulties to get a high level of expression and particularly a tissue-specific expression of transgene. This article describes a new method of genome modification using bacterial artificial chromosome (BAC). Method is based on recombination system of Rаc-prophage (Rec/ET) or λ-phage (Redα/Redβ) transferred into Escherichia coli DH10B cells. In case of BAC recombination, all known regulatory regions essential for desired transgene expression can be included. This method is used for generation of transgenic animals that allows more physiological or tissue-specific expression of transgene in vivo.


Keywords


cloning, BAC recombineering, gene expression, genomic modification

References


1. Copeland N., Jenkins N., Court D. Recombineering: a powerful new tool for mouse functional genomics. Nature Reviews, 2001; 2(10): 769-779.
https://doi.org/10.1038/35093556
PMid:11584293

2. Chrast R., Scott H., Antonarakis S. Linearization and purification of BAC DNA for the development of transgenic mice. Transgenic Research, 1999; 8(2):147-150.
https://doi.org/10.1023/A:1008858014473
PMid:10481314

3. Filbin M., Kieft J. Toward a structural understanding of IRES RNA function. Current Opinion in Structural Biology, 2009; 19(3): 267-276.
https://doi.org/10.1016/j.sbi.2009.03.005
PMid:19362464 PMCid:PMC2757110

4. Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene, 2005; 21(361): 13-37.
https://doi.org/10.1016/j.gene.2005.06.037
PMid:16213112

5. Kühn R., Torres R. Cre/loxP recombination system and gene targeting. Methods in Molecular Biology, 2002; 180: 175-204.
https://doi.org/10.1385/1-59259-178-7:175
PMid:11873650

6. Lalioti M., Heath J. A new method for generating point mutation in bacterial artificial chromosomes by homologous recombination in Escherichia coli. Nucleic Acids Research, 2001; 29(3): 14-22.
https://doi.org/10.1093/nar/29.3.e14
PMid:11160916 PMCid:PMC30415

7. Magdaleno S., Curran T. Gene dosage in mice-BAC to the future. Nature Genetics, 1999; 22(4): 319-320.
https://doi.org/10.1038/11882
PMid:10431229

8. Murphy K. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. The Journal of Bacteriology, 1998; 180(8): 2063-2071.

9. Muyrers J., Zhang Y., Stewart A. ET-cloning: think recombination first. Genetic Engineering, 2000; 22: 77-98.
https://doi.org/10.1007/978-1-4615-4199-8_6
PMid:11501382

10. Muyrers J., Zhang Y., Testa G., Stewart A. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Research, 1999; 27(6): 1555-1557.
https://doi.org/10.1093/nar/27.6.1555
PMid:10037821 PMCid:PMC148353

11. Muyrers J., Zhang Y., Benes V. et al. Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Reports, 2000; 1(3): 239-243.
https://doi.org/10.1093/embo-reports/kvd049
PMid:11256606 PMCid:PMC1083723

12. Muyrers J., Zhang Y., Buchholz F., Stewart A.F. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes and Development, 2000; 14(15): 1971-1982.

13. Muyrers J., Zhang Y., Stewart A. Techniques: recombinogenic engineering - new options for cloning and manipulating DNA. Trends in Biochemical Sciences, 2001; 26(5): 325-331.
https://doi.org/10.1016/S0968-0004(00)01757-6

14. Narayanan K., Williamson R., Zhang Y. et al. Efficient and precise engineering of a 200 kb beta-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system. Gene Therapy, 1999; 6(3): 442-447.
https://doi.org/10.1038/sj.gt.3300901
PMid:10435094

15. Sharan S., Thomason L., Kuznetsov S., Court D. Recombineering: a homologous recombination-based method of genetic engineering. Nature Protocols, 2009; 4(2): 206-223.
https://doi.org/10.1038/nprot.2008.227
PMid:19180090 PMCid:PMC2790811

16. Sternberg N. Cloning high molecular weight DNA fragments by the bacteriophage P1 system. Trends in Genetics, 1992; 8(1): 11-16.
https://doi.org/10.1016/0168-9525(92)90018-Y

17. Takeda K., Akira S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Reviews, 2000; 11(3): 199-207.
https://doi.org/10.1016/S1359-6101(00)00005-8

18. Tsyrulnyk A., Moriggl R. A detailed protocol for bacterial artificial chromosome recombineering to study essential genes in stem cells. Methods in Molecular Biology, 2008; (430): 269-293.
https://doi.org/10.1007/978-1-59745-182-6_19
PMid:18370306

19. Vintersten K., Testa G., Naumann R. et al. Bacterial artificial chromosome transgenesis through pronuclear injection of fertilized mouse oocytes. Methods in Molecular Biology, 2008; 415: 83-100.
https://doi.org/10.1007/978-1-59745-570-1_5
PMid:18370149

20. Wilson T., Kola I. The LoxP/CRE system and genome modification. Methods in Molecular Biology, 2001; 158: 83-94.
https://doi.org/10.1385/1-59259-220-1:83
PMid:11236673

21. Yang X., Model P., Heintz N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nature Biotechnology, 1997; 15(9): 859-865.
https://doi.org/10.1038/nbt0997-859
PMid:9306400

22. Zhang Y., Muyrers J., Testa G., Stewart A. DNA cloning by homologous recombination in Escherichia coli. Nature Biotechnology, 2000; 18(12): 1314-1317.
https://doi.org/10.1038/82449
PMid:11101815


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.