EVALUATION OF CRUDE OIL CONTAMINATED SOIL ON THE CONTENT OF PROLINE AND SOLUBLE SUGARS IN SEDGE (CAREX HIRTA L.) PLANT

H. Korovetska, O. Tsvilynjuk, O. Terek


DOI: http://dx.doi.org/10.30970/sbi.0302.043

Abstract


Hydrocarbons of crude oil are highly toxic to plants, microorganisms, invertebrates and they constitute a potential risk to human health. Phytoremediation is an effective technology which uses plants for cleaning up petroleum contaminated soils. We determined concentrations of organic osmolites (proline and soluble sugars) for evaluation of application of Carex hirta L. plant for phytoremediation. Soil received 0% (control) and 5% v/w of oil. Concentration of proline in young and old leaves of sedge plant under oil pollution decreased (2-fold and 1.7-fold, respectively), whereas in rhizomes increased (1.3-fold), compared to the control. Content of soluble sugars increased in young leaves (3.3-fold) and significantly decreased in old leaves (3.6-fold) of C. hirta plant subjected to oil pollution. The level of soluble sugars in rhizomes of treated sedge plant increased (2.2-fold). Based on the obtained results, following conclusions were done: (a) proline (as osmoregulatory solute) is important for absorption and transportation of water through underground rhizomes of sedge plant; (b) soluble sugars have a great value for osmoregulation process in rhizomes and young leaves of these plants. Thus, C. hirta can sustain growth in oil polluted soils due to the increase of osmotic potential of cells. That is why, this plant may be a good candidate for phytoremediation.


Keywords


Carex hirta, oil contamination, proline, soluble sugars

Full Text:

PDF

References


1. Джура Н.М., Романюк О.І., Гонсьор Я. та ін. Використання рослин для рекультивації ґрунтів, забруднених нафтою і нафтопродуктами. Екологія і ноосферологія, 2006; 17 (1-2): 42-52.

2. Карпин О., Джура Н., Цвілинюк О. та ін. Важкі метали як компонент нафтового забруднення грунту. Вісн. Львів. ун-ту. Сер. біол, 2009; 50: 177-181.

3. Клеточные механизмы адаптации растений к неблагоприятным воздействиям экологических факторов в естественных условиях / Под ред. чл.-кор. НАН Украины Е.Л. Кордюм. К.: Наук. думка, 2003. 277 c.

4. Терек О.І. Механізми адаптації та стійкості рослин до насприятливих факторів довкілля. Журнал агробіології та екології, 2004; 1 (1-2): 41-56.

5. Холодова В.П., Волков К.С., Кузнецов Вл. В. Адаптиция к высоким концентрациям солей меди и цинка растений хрустальной травки и возможность их использования в целях фиторемедиации. Физиология растений, 2005; 52 (6): 848-858.

6. Цайтлер М.Й. Заростання ділянок, забруднених нафтопродуктами (на прикладі Бориславського нафтового родовища). Науковий вісник. Львів: УкрДЛТУ, 1999; 99: 151-154.

7. Alian A., Altman A., Heuer B. Genotypic difference in salinity and water stress tolerance of fresh market tomato cultivars. Plant Science, 2000; 152: 59-65.
https://doi.org/10.1016/S0168-9452(99)00220-4

8. Amadi A., Dickson A.A., Maate G.O. Remediation of oil polluted soils: 1. Effect of organic and inorganic nutrient supplementes on the performance of maize (Zea may L.). Water, Air, and Soil Pollution, 1993; 66: 59-76.
https://doi.org/10.1007/BF00477060

9. Bates L.S., Waldren R.P., Teare I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil, 1973; 39: 205-207.
https://doi.org/10.1007/BF00018060

10. Chandler S.F., Thorpe T.A. Proline accumulation and sodium sulfate tolerance in callus cultures of Brassica napus L. cv. Westar. Plant Cell Rep, 1987; 6: 176-179.
https://doi.org/10.1007/BF00268471
PMid:24248644

11. Chaves M.M., Pereira J.S., Maroco J. et al. How Plants Cope with Water Stress in the Field. Photosynthesis and Growth. Annals of Botany, 2002; 89: 907-916.
https://doi.org/10.1093/aob/mcf105
PMid:12102516 PMCid:PMC4233809

12. Chou I.T., Chen C.T., Kao C.H. Characteristics of the introduction of the accumulation of the proline by abscisic acid isobutyric acid in detached rice leaves. Plant Cell Physiol, 1991; 32: 269-272.
https://doi.org/10.1093/oxfordjournals.pcp.a078073

13. Csonka L.N. Physiological and genetic responses of bacteria to osmotic stress. Microbiological Review, 1989; 53: 121-293.

14. Delauney A.J., Verma D.P.S. Proline biosynthesis and osmoregulation in plants. The Plant Journal,1993; 4 (2): 215-223.
https://doi.org/10.1046/j.1365-313X.1993.04020215.x

15. Dubois M., Gilles K.A., Hamilton J.K. et al. Calorimetric method for determination of sugars and related substances. Anal. Chem, 1956; 28: 350-356.
https://doi.org/10.1021/ac60111a017

16. Frick C.M., Farrell R.E., Germida J.J. Assessment of Phytoremediation as an In-Situ Technique for Cleaning Oil-Contaminated Sites. Department of Soil Science University of Saskatchewan Saskatoon, SK Canada S7N 5A8, 1999; 23-25.

17. Hare P.D., Cress W.A., Van Staden J. Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 1998; 21: 535-553.
https://doi.org/10.1046/j.1365-3040.1998.00309.x

18. Meudec A., Poupart N., Dussauze J., Deslandes E. Relation between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Science of the Total Environment, 2007; 381: 146-156.
https://doi.org/10.1016/j.scitotenv.2007.04.005
PMid:17493664

19. Mohsenzadeh S., Malboobi M.A., Razavi K., Farrahi-Aschtiani S. Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environmental and Experimental Botany, 2006; 56: 314-322.
https://doi.org/10.1016/j.envexpbot.2005.03.008

20. Munns R., Brady C.J., Barlow E.W. Solute accumulation in the apex and leaves of wheat during water stress. Aust. J. Plant Physiol, 1979; 6: 379-389.
https://doi.org/10.1071/PP9790379

21. Odu C.T.I. Microbiology of soils contaminated with petroleum hydrocarbons Natural rehabilitation and reclamation of soil affected. Inst. Petroleum Technol. Publ, 1977; 1: 77-105.

22. Ogboghodo I.A., Iruaga E.K., Osemwota S.I.O., Chokor J.U. An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude types - forcados light and escravos light. Environmental Monitoring and Assessment, 2004; 96: 143-152.
https://doi.org/10.1023/B:EMAS.0000031723.62736.24
PMid:15327154

23. Osuji L.C., Egbuson E.J. Ojinnaka C.M. Assessment and treatment of hydrocarbon inundated soils using inorganic nutrient (N-P-K) supplements: II. A case study of eneka oil spillage in Niger Delta, Nigeria. Environmental Monitoring and Assessment, 2006; 115: 265-278.
https://doi.org/10.1007/s10661-006-6552-6
PMid:16649138

24. Rhodes D., Handa S., Bressan R.A. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol, 1986; 82: 890-903.
https://doi.org/10.1104/pp.82.4.890
PMid:16665163 PMCid:PMC1056230

25. Sánchez F.J. E.F. de Andre's, Tenorio J.L., Ayerbe L. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research, 2004; 86: 81-90.
https://doi.org/10.1016/S0378-4290(03)00121-7

26. Szoke A., Miao G.-H., Hong Z., Verma D.P.S. Subcellular location of ∆1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol, 1992; 99: 1642-1649.
https://doi.org/10.1104/pp.99.4.1642
PMid:16669085 PMCid:PMC1080675

27. Trotel-Aziz P., Niogret M.-F., Larher F. Proline level is partly under the control of abscisic acid in canola leaf discs during recovery from hyper-osmotic stress. Plant Physiol, 2000; 110: 376-383.
https://doi.org/10.1034/j.1399-3054.2000.1100312.x

28. Xu S., An L., Feng H., Wang X., Li X. The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment. Journal of Arid Environments, 2002; 51: 437-447.
https://doi.org/10.1006/jare.2001.0949


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.