SULFUR REDUCING BACTERIA FROM COAL PITS WASTE HEAPS OF CHERVONOGRAD MINING REGION

S. V. Diakiv, S. O. Hnatush, O. M. Moroz, O. Ya. Prypin, O. R. Kulachkovskyi, V. Ye. Bodnaruk


DOI: http://dx.doi.org/10.30970/sbi.1002.453

Abstract


Sulfur reducing bacteria from coal pits waste heaps of Chervonograd minig region were isolated and their seasonal number changes were established. Sulfur reducing bacteria number increases during cold season both at the end of vegetation season, depending on gangue humidity as well as on substrate temperature. The forty sulfur reducing bacteria isolates were selected. According to the highest biomass acumulation and hydrogen sulfide production for the following identification two strains were chosen. The morpho-physiological characteristics of isolated strains SV 30 and SV 35 were investigated. In accordance with obtained data, we assumed isolated strain SV 30 to be identified as genus Desulfuromusa, meanwhile SV 35 – Geobacter. After the seventh day of cultivation, the highest sulfur reducing activity of both strains was observed. Due to the metabolization ability of wide range of pollutants isolated sulfur reducing bacteria are perspective for application in environmental remediation technologies with biological methods.

Keywords: sulfur reducing bacteria, Geobacter, Desulfuromusa, coal pits waste heaps.


Full Text:

PDF

References


1. Babko А.K., Pjatnytskyi І.V. Quantitative analysis. Kyiv: Vyshcha Shkola, 1974. 352 p. (In Ukrainian)

2. Baranov V. І. Ecological description of CEP coal pit waste heaps "CJSC Lvivsystemenergy" as an object for landscaping. Visnyk of Lviv University. Series Biology, 2008; 46: 172-178. (In Ukrainian)

3. Coates J. D., Bhupathiraju V. K., Achenbach L. A. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe (III)-reducers. International Journal of Systematic and Evolutionary Microbiology, 2001; 51: 581-588.
https://doi.org/10.1099/00207713-51-2-581
PMid:11321104

4. Cole J.A., Ferguson S.J. Assimilatory and dissimilatory reduction of ammonia. The Nitrogen and Sulfur Cycles. Cambridge University Press, 1988; 42: 281-329.

5. Cummings D.E., Snoeyenbos-West O.L., Newby D.T. et al. Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microbial Еcology, 2003; 46: 257-269.
https://doi.org/10.1007/s00248-005-8002-3

6. Greene A.C., Patel B.K., Yacob S. Geoalkalibacter subterraneus sp. nov., an anaerobic Fe (III)- and Mn (IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. International Journal of Systematic Bacteriology, 2009; 59: 781-785.
https://doi.org/10.1099/ijs.0.001537-0
PMid:19329606

7. Gudz S.P., Нnatush S.O., Javorska G.V. et al. Practical Microbiology: manual for students. Lviv: NU of Lviv I. Franko, 2014. 436 p. (In Ukrainian).

8. Hedderich R., Klimer O., Kroger А. et al. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiology Reviews, 1999; 22: 353-381.
https://doi.org/10.1111/j.1574-6976.1998.tb00376.x

9. Holmes D.E., Nicoll J.S., Bond D.R. et al. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied and Еnvironmental Microbiology, 2004; 70: 6023-6030.
https://doi.org/10.1128/AEM.70.10.6023-6030.2004
PMid:15466546 PMCid:PMC522133

10. Holmes D.E., Giloteaux L., Chaurasia A.K. et. al. Evidence of Geobacter-associated phagein a uranium-contaminated aquifer. International Society for Sicrobial Ecology Journal, 2015; 9: 333-346.
https://doi.org/10.1038/ismej.2014.128
PMid:25083935 PMCid:PMC4303627

11. Holmes D.E., O'neil R.A., Vrionis H.A. et al. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. International Society for Microbial Ecology Journal, 2007; 1: 663-677.
https://doi.org/10.1038/ismej.2007.85
PMid:18059491

12. Iutynska G.O. Soil microbiology: Manual. Kyiv: Aristej, 2006. 284 p. (In Ukrainian)

13. Kashefi K., Holmes D.E., Baross J.A. et al. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the "Bag City" hydrothermal vent. Applied and Environmental Microbiology, 2003; 69: 2985-2993.
https://doi.org/10.1128/AEM.69.5.2985-2993.2003
PMid:12732575 PMCid:PMC154550

14. Kozlova I.P., Radchenko O.S., Stepura l.G. et al. Microorganisms geochemical activity and it's applied aspects: tutorial labeled with MES. Kyiv: Naukova Dumka, 2008. 528 p.

15. Krumholz, L.R. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. International Journal of Systematic Bacteriology, 1997; 47: 1262-1263.
https://doi.org/10.1099/00207713-47-4-1262

16. Kuever J., Rainey F., Widdel F. Class IV. Deltaproteobacteria class nov. Bergey's Manual of Systematic Bacteriology / Edited by D. Brenner, N. Krieg, J. Staley et al. USA: Springer, 2005.Vol. 2. 922- 925.
https://doi.org/10.1007/0-387-29298-5_3

17. Kunapuli U., Jahn M. K., Lueders T. et al. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. International Journal of Systematic and Evolutionary Microbiology, 2010; 60: 686-695.
https://doi.org/10.1099/ijs.0.003525-0
PMid:19656942

18. Kurdish І.K. The role of microorganisms in rehabilitation of soil fertility. General and Soil Microbiology, 2009; 9: 7-32. (In Ukrainian)

19. Kuzmishyna-Diakiv S., Hnatush S. Microbiota of the Coal Pits Waste Heaps. Saarbrücken, Germany: OmniScriptum GmbH & Co. KG, Lambert Academic Publishing, 2015. 56 p.

20. Lakin G. Biometrics. Moscow: Vysshaja Shkola, 1990. 352 p. (In Russian)

21. Liesack W., Finster K. Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succino xidans sp. nov. International Journal of Systematic Bacteriology, 1994; 44 (4):753-758.
https://doi.org/10.1099/00207713-44-4-753

22. Lin W.C., Coppi M.V., Lovley D.R. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Applied and Environmental Microbiology, 2004; 70 (4): 2525-2528.
https://doi.org/10.1128/AEM.70.4.2525-2528.2004
PMid:15066854 PMCid:PMC383164

23. Lovley D.R. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 1995; 14: 85-93.
https://doi.org/10.1007/BF01569889

24. Lovley D.R. Dissimilatory metal reduction. Annual Review of Microbiology, 1993; 47: 263-290.
https://doi.org/10.1146/annurev.mi.47.100193.001403
PMid:8257100

25. Lovley D.R., Phillips E.J.P., Lonergan D.J. et al. Fe(III) and S0 Reduction by Pelobacter carbinolicus. Applied and Еnvironmental Еicrobiology, 1995; 61 (6): 2132-2138.

26. Lovley D.R., Giovannoni S.J., White D.C. et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Archives of Microbiology, 1993; 159 (4): 336-344.
https://doi.org/10.1007/BF00290916
PMid:8387263

27. Lovley, D.R., Ueki T., Zhang T. et al. Geobacter: The Microbe Electric's Physiology, Ecology, and Practical Applications. Advances in Microbial Physiology, 2011; 59: 1-100.
https://doi.org/10.1016/B978-0-12-387661-4.00004-5
PMid:22114840

28. LPSN - list of prokaryotic names with standing in nomenclature. [internet-resource]. - Access regime: http://www.bacterio.net/deltaproteobacteria.html

29. Nevin K.P., Holmes D.E., Woodard T.L. et al. Reclassification of Trichlorobacter thiogenes as Geobacter thiogenes comb. nov. International Journal of Systematic and Evolutionary Microbiology. 2007; 57: 463-466.
https://doi.org/10.1099/ijs.0.63408-0
PMid:17329769

30. Parte A.C. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Research, 2014; 42 (Database issue), D613-D616.
https://doi.org/10.1093/nar/gkt1111
PMid:24243842 PMCid:PMC3965054

31. Pfennig N., Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov. a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Archives of Microbiology, 1976; 110: 150-155.
https://doi.org/10.1007/BF00416962
PMid:1015937

32. Polanco F.F., Polanco M.F., Uruena M.A. et al. Combining the biological nitrogen and sulphur cycles in anerobic conditions. Water Science Technology, 2001; 44(8): 77-84.
https://doi.org/10.2166/wst.2001.0469

33. Reynolds E.S. The use of lead citrate at high pH as an electronopaque stain in electron microscopy. Journal of Cell Biology, 1963; 17: 208-212.
https://doi.org/10.1083/jcb.17.1.208
PMid:13986422

34. Roden E.E., Lovely D.R. Dissimilatory Fe (III) - reduction by the marine microorganism Desulfuromonas acetoxidans. Applied and Environmental Microbiology, 1993; 59(3): 734-742.

35. Rotaru A.-E., Woodard T.L., Nevin K.P. et al. Link between capacity for current production and syntrophic growth in Geobacter species. Frontiers in Microbiology, 2015: 6, Article 744.
https://doi.org/10.3389/fmicb.2015.00744
PMid:26284037 PMCid:PMC4523033

36. Rozanova E. P. Cultivation and identification methods of both sulfur and it's oxygenated compounds reducing anaerobic bacteria. Theoretical and Methodological Foundations of Fnaerobic Microorganisms Study. Pushchino, 1978. 123-136 p. (In Russian)

37. Shelobolina E.S., Vrionis H.A., Findlay R.H. et al. Geobacter uraniireducens sp. nov., isolated from subsurface sediment undergoing uranium bioremediation. International Journal of Systematic and Evolutionary Microbiology, 2008; 58: 1075-1078.
https://doi.org/10.1099/ijs.0.65377-0
PMid:18450691

38. Sokolov E. M., Kachurin N. M. Waste heaps of Undermoscow basin reculrivation. TulNU News: Earth Science, 2010; 1: 102-105. (In Russian)

39. Sugio D., Oda C., Matsumoto K. et al. Purification and characterization of sulfur reductase from a moderately thermophilic bacterial strain, TI-1, that oxidizes iron. Bioscience, Biotechnology, and Biochemistry, 1998; 62 (4): 705-709.
https://doi.org/10.1271/bbb.62.705

40. Sugiyama M. Reagent composition for measuring hydrogen sulfide and method for measuring hydrogen sulfide. United States Patent N 6340596. 2002.

41. Sun D., Wang A., Cheng S. et al. Geobacter anodireducens sp. nov., an exoelectrogenic microbe in bioelectrochemical Systems. International Journal of Systematic and Evolutionary Microbiology, 2014; 64: 3485-3491.
https://doi.org/10.1099/ijs.0.061598-0
PMid:25052395

42. Tepper E.Z., Shelnikova V.K., Pereverzeva G.I. Practical Microbiology, 3rd ed. Moscow: Agropromizdat, 1987. 239 p. (In Russian)

43. Vandieken V., Mussmann M. Niemann H. et al. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. International Journal of Systematic and Evolutionary Microbiology, 2006; 56: 1133-1139.
https://doi.org/10.1099/ijs.0.63639-0
PMid:16627667

44. Yang T. H., Coppi M. V., Lovley D. R. et al. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microbial Cell Factories, 2010.
https://doi.org/10.1186/1475-2859-9-90
PMid:21092215 PMCid:PMC3002917

45. Zavarzina D. G., Kolganova T. V., Bulygina E. S. et al. Geoalkalibacter ferrihydriticus gen. nov., sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Mikrobiologiia, 2006; 75(6):775-85.
https://doi.org/10.1134/S0026261706060099

46. Zhou S., Yang G., Lu Q. et al. Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2014; 64: 3786-3791.
https://doi.org/10.1099/ijs.0.066662-0
PMid:25139417


Refbacks

  • There are currently no refbacks.


Copyright (c) 2016 Studia biologica