A REVERSAL TO HYPOGYNY IN CAMPANULA ALPINA AND ITS IMPACT ON CAPSULE DEHISCENCE: EVIDENCE FROM MORPHO-ANATOMY OF THE FRUITING OVARY

Anastasiya Odintsova, Yaroslav Khomei, Roksolana Andreychuk


DOI: http://dx.doi.org/10.30970/sbi.1802.774

Abstract


Introduction. Campanula alpina is a perennial herbaceous bellflower grown in the Eastern Alps, Carpathians, and Balkans. Fruit in Campanula species opens by the hippocrepiform slits in the fruit wall, which are formed by axicorns, elongated structures inside the ovary composed of lignified parenchyma cells. Our objectives were to reveal the fruit structure and dehiscence mode in C. alpina and compare it with C. latifolia, a type species of the genus Campanula.
Materials and methods. Flowers and fruits at different stages of morphogenesis of C. alpina subsp. alpina were examined. Plant materials were sampled in two plots in the Chornohora massif of the Ukrainian Carpathians.
Results. Contrary to other Campanula species, in C. alpina only the basal part of the ovary is fused with the calyx forming the flattened ovary base. The placentation is axile, the fruit wall and septas are parenchymatous, only axicorns are lignified. Dehiscence of the hanged fruit proceeds by the curving of axicorns outside by drying. In the dehiscent capsule viewed from above, hollow openings in the horizontal ovary base are exposed, and the curved axicorns attached to the crumpled fragments of the ovary wall are visible inside the ovary.
Discussion. The dehiscence of the fruit in C. alpina proceeds through septifragal and hippocrepiform slits like in C. latifolia. The main differences are that the ovary is mostly superior, openings are located on the horizontal ovary base, and valves together with axicorns curve inside the ovary. The semi-inferior or nearly superior ovary insertion could be traced in illustrations in digital databases and researches for some taxa of Campanula section Medium. No issues have been made on the evolution of the ovary position in Campanuleae, since only the inferior ovary was referred for this tribe before the present article. The functional implications of shifts in the ovary position in C. alpina could be a result of selection of the pollination mechanism, or dissemination mode.
Conclusions. The peculiarity of the fruit in C. alpina is the axicorns curving inside the ovary during the dehiscence. It is expected that deviation from the inferior ovary will be confirmed in other related species of the Campanula with pendent fruits. No argumentation about the evolution of secondary hypogyny in Campanula has been proposed so far.


Keywords


bellflower family, gynoecium, capsular fruit, morphogenesis, axicorn

Full Text:

PDF

References


Andreychuk, R., & Odintsova, А. (2019). Morphological and anatomical structure of Campanula latifolia L. fruits. Studia Biologica, 13(1), 95-105. doi:10.30970/sbi.1301.593
CrossrefGoogle Scholar

Andreychuk, R., & Odintsova, А. (2020). Actual state of carpological studies in the family Campanulaceae Juss. with regard to its systematics. Studia Biologica, 14(2), 95-116. doi:10.30970/sbi.1402.616 (In Ukrainian)
CrossrefGoogle Scholar

Andreychuk, R., & Odintsova, A. (2021). Morpho-anatomy of the gynoecium and fruit in three ornamental members of Campanuloideae (Campanulaceae). Acta Agrobotanica, 74, 7415. doi:10.5586/aa.7415
Crossref ● PubMed ● PMC ● Google Scholar
https://doi.org/10.5586/aa.7415

Basso-Alves, J. P., Goldenberg, R., & Teixeira, S. P. (2017). The ontogenetic bases for variation in ovary position in Melastomataceae. American Journal of Botany, 104(8), 1142-1156. doi:10.3732/ajb.1700114
CrossrefPubMedGoogle Scholar

Beck, G. (1885). Untersuchungen über den Öffnungsmechanismus der Porenkapseln. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien. bd. 35, 23-24. Retrieved from https://www.zobodat.at/pdf/VZBG_35_0001-0044.pdf

Boissier, E. (1875). Flora Orientalis: sive, Enumeratio plantarum in Oriente a Graecia et Aegypto ad Indiae fines hucusque observatarum (Vol. 3). Switzerland, Basel & Geneva: H. Georg. Retrieved from https://archive.org/details/floraorientalis00boisgoog/page/n7/mode/2up
Google Scholar

Borsch, T., Korotkova, N., Raus, T., Lobin, W., & Löhne, C. (2009). The petD group II intron as a species level marker: utility for tree inference and species identification in the diverse genus Campanula (Campanulaceae). Willdenowia, 39(1), 7-33. doi:10.3372/wi.39.39101
CrossrefGoogle Scholar

Candolle, A. de, Anspach, Heyland, & Millenet. (1830). Monographie des Campanulâees. Paris: Veuve Desray. doi:10.5962/bhl.title.111415
Crossref

Crowl, A. A., Miles, N. W., Visger, C. J., Hansen, K., Ayers, T., Haberle, R., & Cellinese, N. (2016). A global perspective on Campanulaceae: biogeographic, genomic, and floral evolution. American Journal of Botany, 103(2), 233-245. doi:10.3732/ajb.1500450
CrossrefPubMedGoogle Scholar

Dremliuga, N. G. (2009). An overview of taxonomic studies of the genus Campanula L. Ukrainian Botanical Journal, 66(6), 805-813. (In Ukrainian)
Google Scholar

Dremliuga, N. (2013). The fruіts' morphological peculiarities of species fromsection Medium D.C. of genus Campanula L. in the flora of Ukraine. Chornomorski Botanical Journal, 9(1), 24-29. doi:10.14255/2308-9628/13.91/3 (In Ukrainian)
CrossrefGoogle Scholar

Dremliuga, N G., & Zyman, S.M. (2013). Biomorphological analysis of Campanula L. species in flora of Ukraine. Biological System, 5(1), 31-38. (In Ukrainian)
Google Scholar

Eddie, W. M. M., Shulkina, T., Gaskin, J., Haberle, R. C., & Jansen, R. K. (2003). Phylogeny of Campanulaceae s. str. inferred from ITS sequences of nuclear ribosomal DNA. Annals of the Missouri Botanical Garden, 90(4), 554-575. doi:10.2307/3298542
CrossrefGoogle Scholar

Eichler, A. W. (1875). Bluethendiagramme. Leipzig: Engelmann. Retrieved from https://www.biodiversitylibrary.org/item/45473#page/149/mode/1up
Google Scholar

Eyde, R. H., & Tseng, C. C. (1969). Flower of Tetraplasandra gymnocarpa hypogyny with epigynous ancestry. Science, 166(3904), 506-508. doi:10.1126/science.166.3904.506
CrossrefGoogle Scholar

GBIF.org (2024), GBIF Home Page. Retrieved from https://www.gbif.org (25 March 2024).

Jacquin, N. J., Gerold, J. Michaelis., Kaliwoda, L. Johannis., & Scheidl, F. A. v. (1773). Florae Austriacae, sive, Plantarum selectarum in Austriae archiducatu: sponte crescentium icones, ad vivum coloratae, et descriptionibus, ac synonymis illustratae (Vol. 2, p. 12, Tabula 118). Viennae. doi:10.5962/bhl.title.457
CrossrefGoogle Scholar

Kaplan, D. R. (1967). Floral morphology, organogenesis and interpretation of the inferior ovary in Downingia bacigalupii. American Journal of Botany, 54(10), 1274-1290. doi:10.1002/j.1537-2197.1967.tb10765.x
CrossrefGoogle Scholar

Kindermann, V. (1911). Zur Frucht- und Samenbiologie der Gattung Campanula. Naturwissenschaftliche Wochenschrift, 10/26(47), 742-745. Retrieved from https://www.biodiversitylibrary.org/item/17870#page/5/mode/1up

Kuzoff, R. K., Hufford, L., & Soltis, D. E. (2001). Structural homology and developmental transformations associated with ovary diversification in Lithophragma (Saxifragaceae). American Journal of Botany, 88(2), 196-205. doi:10.2307/2657010
CrossrefGoogle Scholar

Lakoba, P. V. (1986). Towards the anatomy of axicorn: an organ of Campanulaceae. Bulletin of the Academy of Sciences of the Georgian SSR, 123(1), 141-143. (In Russian)
Google Scholar

Lammers, T. G. (2007). Campanulaceae. In J. W. Kadereit & C. Jeffrey (Eds.), Flowering plants. Eudicots. The families and genera of vascular plants (Vol. 8, pp. 26-56). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-31051-8_5
CrossrefGoogle Scholar

Leins, P. & Erbar, C. (2010). Flower and fruit: morphology, ontogeny, phylogeny, function and ecology. Stuttgart: Schweizerbart.
Google Scholar

Liljegren, S. (2010). Phloroglucinol stain for lignin. Cold Spring Harbor Protocols, 2010(1), pdb.prot4954. doi:10.1101/pdb.prot4954
CrossrefPubMedGoogle Scholar

Liveri, E., Crowl, A. A., & Cellinese, N. (2019). Past, present, and future of Campanula (Campanulaceae) systematics - a review. Botanika Chronika, 22, 209-222.
Google Scholar

Mansion, G., Parolly, G., Crowl, A. A., Mavrodiev, E., Cellinese, N., Oganesian, M., Fraunhofer, K., Kamari, G., Phitos, D., Haberle, R., Akaydin, G., Ikinci, N., Raus, T., & Borsch, T. (2012). How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS One, 7(11), e50076. doi:10.1371/journal.pone.0050076
CrossrefPubMedPMCGoogle Scholar

Miroshnichenko, N. N. (2014). Some aspects of the reproductive biology of Campanula sibirica L., C. taurica Juz. and C. talievii Juz. in Crimea. Studia Biologica, 8(1), 161-170. (In Ukrainian) doi:10.30970/sbi.0801.335
CrossrefGoogle Scholar

Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine: a nomenclatorial checklist. Kiev: National Academy of Sciences of Ukraine, M. G. Kholodny Institute of Botany.
Google Scholar

Niu, Y., Zhou, Z., Sha, W., & Sun, H. (2016). Post-floral erection of stalks provides insight into the evolution of fruit orientation and its effects on seed dispersal. Scientific Reports, 6(1), 20146. doi:10.1038/srep20146
CrossrefPubMedPMCGoogle Scholar

Odintsova, A. (2016). Loculicidal dehiscence of superior and inferior capsular fruits in Myrtales. Studia Biologica, 10(3-4), 129-140. doi:10.30970/sbi.1003.504 (In Ukrainian)
CrossrefGoogle Scholar

Odintsova, A. V. (2022). Morphogenesis of fruit as a subject matter for the carpological studies. Ukrainian Botanical Journal, 79(3), 169-183. doi:10.15407/ukrbotj79.03.169 (In Ukrainian)
CrossrefGoogle Scholar

Odintsova, A. (2023). Method for drafting a morpho-anatomical description of the fruit using light microscopy. Visnyk of Lviv University. Biological Series, 89, 3-19. doi:10.30970/vlubs.2023.89.01 (In Ukrainian)
CrossrefGoogle Scholar

Pradhan Mitra, P., & Loqué, D. (2014). Histochemical staining of Arabidopsis thaliana secondary cell wall elements. Journal of Visualized Experiments, 87, e51381. doi:10.3791/51381
CrossrefPubMedPMCGoogle Scholar

Ronikier, M., & Zalewska-Galosz, J. (2014). Independent evolutionary history between the Balkan ranges and more northerly mountains in Campanula alpina s.l. (Campanulaceae): genetic divergence and morphological segregation of taxa. Taxon, 63(1), 116-131. doi:10.12705/631.4
CrossrefGoogle Scholar

Ronikier, M., Cieślak, E. & Korbecka, G. (2008). High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Molecular Ecology, 17(7), 1763-1775. doi:10.1111/j.1365-294X.2008.03664.x
CrossrefPubMedGoogle Scholar

Roquet, C., Sáez, L., Aldasoro, J. J., Susanna, A., Alarcón, M. L., & Garcia-Jacas, N. (2008). Natural delineation, molecular phylogeny and floral evolution in Campanula. Systematic Botany, 33(1), 203-217. doi:10.1600/036364408783887465
CrossrefGoogle Scholar

Roth, I. (1977). Fruits of angiosperms. In W. Zimmermann, S. Carlquist, P. Ozenda, H.D. Wulff. (Eds.), Encyclopedia of plant anatomy (Vol. 10, Part 1). Berlin, Stuttgart: Gebrüder Borntraeger.
Google Scholar

Schlatti, V. F., & Eberwein, R. K. (2016). Pflanzen mit invasivem Potenzial in Botanischen Gärten XIII: Campanula hofmannii (Campanulaceae). Carinthia II, 206, 177-186.

Schönland, S. (1894). Campanulaceae. In A. Engler & K. Prantl (Eds.), Die Natürlichen Pflanzenfamilien (Teil IV, Abteilung 5, pp. 40-70). Leipzig: Wilhelm Engelmann. Retrieved from https://www.biodiversitylibrary.org/item/100167#page/260/mode/1up

Simpson, M. G. (1998). Reversal in ovary position from inferior to superior in the Haemodoraceae: evidence from floral ontogeny. International Journal of Plant Sciences, 159(3), 466-479. doi:10.1086/297564
CrossrefGoogle Scholar

Soltis, D. E., & Hufford, L. (2002). Ovary position diversity in Saxifragaceae: сlarifying the homology of epigyny. International Journal of Plant Sciences, 163(2), 277-293. doi:10.1086/324528
CrossrefGoogle Scholar

Soltis, D. E., Fishbein, M., & Kuzoff, R. K. (2003). Reevaluating the evolution of epigyny: data from phylogenetics and floral ontogeny. International Journal of Plant Sciences, 164(S5), S.251-S264. doi:10.1086/376876
CrossrefGoogle Scholar

Spjut, R. W. (1994). A systematic treatment of fruit types. New York: New York Botanical Garden. Retrieved from http://www.worldbotanical.com/fruit_types.htm#Classification
Google Scholar

Stepanova A. (2002). Über Reversionen morphologischer Blütenmerkmale bei ausgewählten Melaleuca-Arten (Myrtaceae). Wulfenia, 9, 19-23.
Google Scholar

Stevens, P. F. (2017). Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. Bushfire resources: Campanulaceae. Retrieved from: http://www.mobot.org/MOBOT/research/APweb

Stull, G. W., Schori, M., Soltis, D. E., & Soltis, P. S. (2018). Character evolution and missing (morphological) data across Asteridae. American Journal of Botany, 105(3), 470-479. doi:10.1002/ajb2.1050
CrossrefPubMedGoogle Scholar

Sturm, J. (1830). Deutschlands flora in Abbildungen nach der Natur (Bd. 13, Tabelle 38, pp. 3-4). Nurnberg. doi.org/10.5962/bhl.title.77305 Retrieved from: https://www.biodiversitylibrary.org/item/148238#page/161/mode/1up
CrossrefGoogle Scholar

Takhtajan, A. (2009). Flowering plants (2nd ed.). Dordrecht, Netherlands: Springer. doi:10.1007/978-1-4020-9609-9
CrossrefGoogle Scholar

van der Pijl, L. (1982). Principles of dispersal in higher plants (Ed. 3rd). Berlin Heidelberg: Springer. doi:10.1007/978-3-642-87925-8
CrossrefGoogle Scholar

Visyulina, O. D. (1961). Rodyna Dzvonykovi - Campanulaceae Juss. [Family Campanulaceae Juss.] In M. Sh. Kotov (Ed.), Flora URSR [Flora of Ukrainian SSR] (Vol. 10, pp. 401-435). Kyiv: Academy of Sciences of USSR. (In Ukrainian)
Google Scholar

Wilde, D. W. J., & Duyfjes, B. E. (2012). Revision of Cyclocodon Griff. ex Hook.f. & Thomson (Campanulaceae). Thai Forest Bulletin (Botany), 40, 20-25.
Google Scholar

Xiang, Y., Zhang, T., Zhao, Y., Dong, H., Chen, H., Hu, Y., Huang, C., Xiang, J., & Ma, H. (2024). Angiosperm-wide analysis of fruit and ovary evolution aided by a new nuclear phylogeny supports association of the same ovary type with both dry and fleshy fruits. Journal of Integrative Plant Biology, 66(2), 228-251. doi:10.1111/jipb.13618
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Anastasiya Odintsova, Yaroslav Khomei, Roksolana Andreychuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.