THE EFFECT OF SALICYLIC ACID ON THE CONTENT OF ASCORBIC ACID AND PHENOLIC COMPOUNDS IN WHEAT PLANTS
DOI: http://dx.doi.org/10.30970/sbi.1802.778
Abstract
Background. Salicylic acid is an important phytohormone in plants, influencing various functions such as senescence, respiration, and stress resistance. Despite extensive studies the role of salicylic acid in stress, its effects under normal conditions are less understood. This study explores the influence of salicylic acid on the biosynthesis of important biochemical compounds such as ascorbic acid, rutin, and other phenolic compounds in wheat (Triticum aestivum L.), aiming to elucidate potential applications in agriculture.
Materials and Methods. Wheat variety 'Podolyanka' was treated with 0.05 mM salicylic acid and grown under controlled conditions. Biochemical analyses were studied on 7, 10 and 20 days of growth to using the spectrophotometric method for the determination of ascorbic acid, rutin, total phenolic compounds, anthocyanins, flavonoids, and xanthones. Methods included chromatography on the plate with silicagel for rutin.
Results and Discussion. Salicylic acid treatment significantly increased the ascorbic acid content in wheat shoots at all studied stages. There was also a notable increase in rutin content in the early growth phase. However, the content of other phenolic compounds, such as xanthones, generally decreased under salicylic acid treatment. Intriguingly, anthocyanin content was increased, suggesting a complex interaction within the biosynthetic pathways influenced by salicylic acid. The study also revealed correlations among different phenolic compounds, indicating intertwined metabolic pathways.
Conclusion. Salicylic acid enhances the biosynthesis of specific phenolic compounds like ascorbic acid and rutin in wheat, which can have implications for agricultural practices aiming at improving plant resilience and nutritional quality. The differential impact of SA on various phenolic compounds underscores the complexity of plant biochemical pathways and highlights the need for further research to fully understand these interactions and their practical applications.
Keywords
Full Text:
PDFReferences
Beggs, C. J., & Wellmann, E. (1994). Photocontrol of flavonoid biosynthesis. In R. E. Kendrick & G. H. M. Kronenberg (Eds.), Photomorphogenesis in plants (pp. 733-751). Dordrecht: Springer Netherlands. doi:10.1007/978-94-011-1884-2_26 Crossref ● Google Scholar | ||||
| ||||
Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. R., & Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of Science of Food and Agriculture, 95(1), 204-209. doi:10.1002/jsfa.6706 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Crozier, A., Jaganath, I. B., & Clifford, M. N. (2006). Phenols, polyphenols, and tannins: an overview. In A. Crozier, M. N. Clifford, H. Ashihara (Eds.), Plant secondary metabolites: occurrence, structure and role in the human diet (pp. 1-24). Blackwell Publishing. doi:10.1002/9780470988558.ch1 Crossref ● Google Scholar | ||||
| ||||
Engelhardt, L., Pöhnl, T., & Neugart, S. (2021). Interactions of ascorbic acid, 5-caffeoylquinic acid, and quercetin-3-rutinoside in the presence and absence of iron during thermal processing and the influence on antioxidant activity. Molecules, 26(24), 76-98. doi:10.3390/molecules26247698 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Farr, J., & Giusti, M. (2018). Investigating the interaction of ascorbic acid with anthocyanins and pyranoanthocyanins. Molecules, 23(4), 744. doi:10.3390/molecules23040744 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gaafar, A. A., Ali, S. I., El-Shawadfy, M. A., Salama, Z. A., Sękara, A., Ulrichs, C., & Abdelhamid, M. T. (2020). Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants, 9(5), 627. doi:10.3390/plants9050627 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Gondor, O. K., Janda, T., Soós, V., Pál, M., Majláth, I., Adak, M. K., Balázs, E., & Szalai, G. (2016). Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Frontiers in Plant Science, 7, 1447. doi:10.3389/fpls.2016.01447 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Guo, B., Liu, C., Liang, Y., Li, N., & Fu, Q. (2019). Salicylic acid signals plant defence against cadmium toxicity. International Journal of Molecular Sciences, 20(12), 2960. doi:10.3390/ijms20122960 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi:10.3390/antiox9080681 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347. Google Scholar | ||||
| ||||
Jaleel, C. A., Wang, G., & Ahmad, P. (2009). Changes in the photosynthetic characteristics of Catharanthus roseus L. as a result of exogenous growth regulator. Plant Omics Journal, 2(4), 169-174. Google Scholar | ||||
| ||||
Joubert, E., Botha, M., Maicu, C., Beer, D., & Manley, M. (2012). Rapid screening methods for estimation of mangiferin and xanthone contents of Cyclopia subternata plant material. South African Journal of Botany, 82, 113-122. doi:10.1016/j.sajb.2012.07.019 Crossref ● Google Scholar | ||||
| ||||
Joubert, E., Manley, M., & Botha, M. (2008). Evaluation of spectrophotometric methods for screening of green rooibos (Aspalathus linearis) and green honeybush (Cyclopia genistoides) extracts for high levels of bio-active compounds. Phytochemical Analysis, 19(2), 169-178. doi:10.1002/pca.1033 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kavulych, Y., Kobyletska, M., & Terek, O. (2019). Investigation of salicylic acid-induced change on flavonoids production under cadmium toxicity in buckwheat (Fagopyrum esculentum Moench) plants. EUREKA: Life Sciences, 5, 13-18. doi:10.21303/2504-5695.2019.00986 Crossref ● Google Scholar | ||||
| ||||
Kaya, C., Ugurlar, F., Ashraf, M., & Ahmad, P. (2023). Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiology and Biochemistry, 196, 431-443. doi:10.1016/j.plaphy.2023.02.006 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462. doi:10.3389/fpls.2015.00462 Crossref ● Google Scholar | ||||
| ||||
Kobyletska, M., Kavulych, Y., Romanyuk, N., Korchynska, O., & Terek, O. (2022). Exogenous salicylic acid modifies cell wall lignification, total phenolic content, PAL-activity in wheat (Triticum aestivum L.) and buckwheat (Fagopyrum esculentum Moench) plants under cadmium chloride impact. Biointerface Research in Applied Chemistry, 13, 117. doi:10.33263/briac132.117 Crossref ● Google Scholar | ||||
| ||||
Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1), 1-10. doi:10.5423/ppj.rw.12.2019.0295 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Krivut, B. A., Fedyunina, N. A., Kocherga, S. I., & Rusakova, S. V. (1976). Spectrophotometric determination of mangiferin. Chemistry of Natural Compounds, 12(1), 36-38. doi:10.1007/bf00570176 Crossref ● Google Scholar | ||||
| ||||
Malyk, B., Kavulych, Y., & Kobyletska, M. (2017). Bplyv salitsylatu i kadmii khlorydu na aktyvnist polifenoloksydazy u roslynakh hrechky (Fagopyrum esculentum Moench.) [The effect of salicylate and cadmium chloride on polyphenol oxidase activity in buckwheat plants (Fagopyrum esculentum Moench)]. Studia Biologica, 11(3-4), 70-71. doi:10.30970/sbi.1103 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Musienko, M. M., Parshikova, T. V., & Slavny, P. S. (2001). Spektrofotometrychni metody v praktytsi fiziolohii, biokhimii ta ekolohii roslyn [Spectrophotometric methods in the practice of physiology, biochemistry, and ecology of plants]. Kyiv: Fitosotsiotsentr. (In Ukrainian) Google Scholar | ||||
| ||||
Page, M., Sultana, N., Paszkiewicz, K., Florance, H., & Smirnoff, N. (2012). The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant, Cell & Environment, 35, 388-404. doi:10.1111/j.1365-3040.2011.02369.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The chemistry behind the folin-ciocalteu method for the estimation of (poly) phenol content in food: total phenolic intake in a mediterranean dietary pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543-17553. doi:10.1021/acs.jafc.3c04022 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Petry, R. D., Ortega, G. G., & Silva, W. B. (2001). Flavonoid content assay: influence of the reagent concentration and reaction time on the spectrophotometric behavior of the aluminium chloride-flavonoid complex. Die Pharmazie, 56(6), 465-470. PubMed ● Google Scholar | ||||
| ||||
Poór, P. (2020). Effects of salicylic acid on the metabolism of mitochondrial reactive oxygen species in plants. Biomolecules, 10(2), 341. doi:10.3390/biom10020341 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rempfer, C., Hoernstein, S. N. W., van Gessel, N., Graf, A. W., Spiegelhalder, R. P., Bertolini, A., Bohlender, L. L., Parsons, J., Decker, E. L., & Reski, R. (2024). Differential prolyl hydroxylation by six Physcomitrella prolyl-4 hydroxylases. bioRxiv, 2024-03. doi:10.1101/2024.03.26.586753 Crossref ● Google Scholar | ||||
| ||||
Sangwan, S., Shameem, N., Yashveer, S., Tanwar, H., Parray, J. A., Jatav, H. S., Sharma, S., Punia, H., Sayyed, R. Z., & Almalki, W. H. (2022). Role of salicylic acid in combating heat stress in plants: insights into modulation of vital processes. Frontiers in Bioscience-Landmark, 27(11), 310. doi:10.31083/j.fbl2711310 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Sytar, O., Kosyan, A., Taran, N., & Smetanska, I. (2014). Anthocyanin's as marker for selection of buckwheat plants with high rutin content. Gesunde Pflanzen, 66(4), 165-169. doi:10.1007/s10343-014-0331-z Crossref ● Google Scholar | ||||
| ||||
Yuan, S., & Lin, H.-H. (2008). Minireview: role of salicylic acid in plant abiotic stress. Zeitschrift Für Naturforschung C, 63(5-6), 313-320. doi:10.1515/znc-2008-5-601 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Smirnoff, N., & Wheeler, G. L. (2000). Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Biochemistry and Molecular Biology, 35(4), 291-314. doi:10.1080/10409230008984166 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Smirnov, O., & Kosyk, O. (2011). Flavonoidy, rutyn, kvertsetyn. Biosyntez, struktura, funktsii [Flavonoids, rutin, and quercetin. Biosynthesis, structure, functions]. Bulletin of Lviv University. Biological Series, 56, 3-11. (In Ukrainian) Google Scholar | ||||
| ||||
Smirnov, O., Kosyan, A., & Kosyk, O. (2012). The Cycocel effect on flavonoids content and phenylalanine ammonia-lyase (PAL) activity in buckwheat (Fagopyrum esculentum Moench.) plant. Studia Biologica, 6(3), 247-252. doi:10.30970/sbi.0603.230 Crossref ● Google Scholar | ||||
| ||||
Song, W., Shao, H., Zheng, A., Zhao, L., & Xu, Y. (2023). Advances in roles of salicylic acid in plant tolerance responses to biotic and abiotic stresses. Plants, 12(19), 3475. doi:10.3390/plants12193475 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Torun, H., Novák, O., Mikulík, J., Strnad, M., & Ayaz, F. A. (2022). The effects of exogenous salicylic acid on endogenous phytohormone status in Hordeum vulgare L. under salt stress. Plants, 11(5), 618. doi:10.3390/plants11050618 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Yang, W., Zhou, Z., & Chu, Z. (2023). Emerging roles of salicylic acid in plant saline stress tolerance. International Journal of Molecular Sciences, 24(4), 3388. doi:10.3390/ijms24043388 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Zandi, P., & Schnug, E. (2022). Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology, 11(2), 155. doi:10.3390/biology11020155 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Myroslava Kobyletska, Yana Kavulych
This work is licensed under a Creative Commons Attribution 4.0 International License.