THE EFFECT OF SALICYLIC ACID ON THE CONTENT OF ASCORBIC ACID AND PHENOLIC COMPOUNDS IN WHEAT PLANTS

Myroslava Kobyletska, Yana Kavulych


DOI: http://dx.doi.org/10.30970/sbi.1802.778

Abstract


Background. Salicylic acid is an important phytohormone in plants, influencing various functions such as senescence, respiration, and stress resistance. Despite extensive studies the role of salicylic acid in stress, its effects under normal conditions are less understood. This study explores the influence of salicylic acid on the biosynthesis of important biochemical compounds such as ascorbic acid, rutin, and other phenolic compounds in wheat (Triticum aestivum L.), aiming to elucidate potential applications in agriculture.
Materials and Methods. Wheat variety 'Podolyanka' was treated with 0.05 mM salicylic acid and grown under controlled conditions. Biochemical analyses were studied on 7, 10 and 20 days of growth to using the spectrophotometric method for the determination of ascorbic acid, rutin, total phenolic compounds, anthocyanins, flavonoids, and xanthones. Methods included chromatography on the plate with silicagel for rutin.
Results and Discussion. Salicylic acid treatment significantly increased the ascorbic acid content in wheat shoots at all studied stages. There was also a notable increase in rutin content in the early growth phase. However, the content of other phenolic compounds, such as xanthones, generally decreased under salicylic acid treatment. Intriguingly, anthocyanin content was increased, suggesting a complex interaction within the biosynthetic pathways influenced by salicylic acid. The study also revealed correlations among different phenolic compounds, indicating intertwined metabolic pathways.
Conclusion. Salicylic acid enhances the biosynthesis of specific phenolic compounds like ascorbic acid and rutin in wheat, which can have implications for agricultural practices aiming at improving plant resilience and nutritional quality. The differential impact of SA on various phenolic compounds underscores the complexity of plant biochemical pathways and highlights the need for further research to fully understand these interactions and their practical applications.


Keywords


Triticum aestivum L., salicylic acid, phenolic compounds, ascorbic acid, rutin, anthocyanins, xanthones, flavonoids

Full Text:

PDF

References


Beggs, C. J., & Wellmann, E. (1994). Photocontrol of flavonoid biosynthesis. In R. E. Kendrick & G. H. M. Kronenberg (Eds.), Photomorphogenesis in plants (pp. 733-751). Dordrecht: Springer Netherlands. doi:10.1007/978-94-011-1884-2_26
CrossrefGoogle Scholar

Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. R., & Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of Science of Food and Agriculture, 95(1), 204-209. doi:10.1002/jsfa.6706
CrossrefPubMedGoogle Scholar

Crozier, A., Jaganath, I. B., & Clifford, M. N. (2006). Phenols, polyphenols, and tannins: an overview. In A. Crozier, M. N. Clifford, H. Ashihara (Eds.), Plant secondary metabolites: occurrence, structure and role in the human diet (pp. 1-24). Blackwell Publishing. doi:10.1002/9780470988558.ch1
CrossrefGoogle Scholar

Engelhardt, L., Pöhnl, T., & Neugart, S. (2021). Interactions of ascorbic acid, 5-caffeoylquinic acid, and quercetin-3-rutinoside in the presence and absence of iron during thermal processing and the influence on antioxidant activity. Molecules, 26(24), 76-98. doi:10.3390/molecules26247698
CrossrefPubMedPMCGoogle Scholar

Farr, J., & Giusti, M. (2018). Investigating the interaction of ascorbic acid with anthocyanins and pyranoanthocyanins. Molecules, 23(4), 744. doi:10.3390/molecules23040744
CrossrefPubMedPMCGoogle Scholar

Gaafar, A. A., Ali, S. I., El-Shawadfy, M. A., Salama, Z. A., Sękara, A., Ulrichs, C., & Abdelhamid, M. T. (2020). Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants, 9(5), 627. doi:10.3390/plants9050627
CrossrefPubMedPMCGoogle Scholar

Gondor, O. K., Janda, T., Soós, V., Pál, M., Majláth, I., Adak, M. K., Balázs, E., & Szalai, G. (2016). Salicylic acid induction of flavonoid biosynthesis pathways in wheat varies by treatment. Frontiers in Plant Science, 7, 1447. doi:10.3389/fpls.2016.01447
CrossrefPubMedPMCGoogle Scholar

Guo, B., Liu, C., Liang, Y., Li, N., & Fu, Q. (2019). Salicylic acid signals plant defence against cadmium toxicity. International Journal of Molecular Sciences, 20(12), 2960. doi:10.3390/ijms20122960
CrossrefPubMedPMCGoogle Scholar

Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. doi:10.3390/antiox9080681
CrossrefPubMedPMCGoogle Scholar

Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station, 347.
Google Scholar

Jaleel, C. A., Wang, G., & Ahmad, P. (2009). Changes in the photosynthetic characteristics of Catharanthus roseus L. as a result of exogenous growth regulator. Plant Omics Journal, 2(4), 169-174.
Google Scholar

Joubert, E., Botha, M., Maicu, C., Beer, D., & Manley, M. (2012). Rapid screening methods for estimation of mangiferin and xanthone contents of Cyclopia subternata plant material. South African Journal of Botany, 82, 113-122. doi:10.1016/j.sajb.2012.07.019
CrossrefGoogle Scholar

Joubert, E., Manley, M., & Botha, M. (2008). Evaluation of spectrophotometric methods for screening of green rooibos (Aspalathus linearis) and green honeybush (Cyclopia genistoides) extracts for high levels of bio-active compounds. Phytochemical Analysis, 19(2), 169-178. doi:10.1002/pca.1033
CrossrefPubMedGoogle Scholar

Kavulych, Y., Kobyletska, M., & Terek, O. (2019). Investigation of salicylic acid-induced change on flavonoids production under cadmium toxicity in buckwheat (Fagopyrum esculentum Moench) plants. EUREKA: Life Sciences, 5, 13-18. doi:10.21303/2504-5695.2019.00986
CrossrefGoogle Scholar

Kaya, C., Ugurlar, F., Ashraf, M., & Ahmad, P. (2023). Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants. Plant Physiology and Biochemistry, 196, 431-443. doi:10.1016/j.plaphy.2023.02.006
CrossrefPubMedGoogle Scholar

Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 462. doi:10.3389/fpls.2015.00462
CrossrefGoogle Scholar

Kobyletska, M., Kavulych, Y., Romanyuk, N., Korchynska, O., & Terek, O. (2022). Exogenous salicylic acid modifies cell wall lignification, total phenolic content, PAL-activity in wheat (Triticum aestivum L.) and buckwheat (Fagopyrum esculentum Moench) plants under cadmium chloride impact. Biointerface Research in Applied Chemistry, 13, 117. doi:10.33263/briac132.117
CrossrefGoogle Scholar

Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1), 1-10. doi:10.5423/ppj.rw.12.2019.0295
CrossrefPubMedPMCGoogle Scholar

Krivut, B. A., Fedyunina, N. A., Kocherga, S. I., & Rusakova, S. V. (1976). Spectrophotometric determination of mangiferin. Chemistry of Natural Compounds, 12(1), 36-38. doi:10.1007/bf00570176
CrossrefGoogle Scholar

Malyk, B., Kavulych, Y., & Kobyletska, M. (2017). Bplyv salitsylatu i kadmii khlorydu na aktyvnist polifenoloksydazy u roslynakh hrechky (Fagopyrum esculentum Moench.) [The effect of salicylate and cadmium chloride on polyphenol oxidase activity in buckwheat plants (Fagopyrum esculentum Moench)]. Studia Biologica, 11(3-4), 70-71. doi:10.30970/sbi.1103 (In Ukrainian)
CrossrefGoogle Scholar

Musienko, M. M., Parshikova, T. V., & Slavny, P. S. (2001). Spektrofotometrychni metody v praktytsi fiziolohii, biokhimii ta ekolohii roslyn [Spectrophotometric methods in the practice of physiology, biochemistry, and ecology of plants]. Kyiv: Fitosotsiotsentr. (In Ukrainian)
Google Scholar

Page, M., Sultana, N., Paszkiewicz, K., Florance, H., & Smirnoff, N. (2012). The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis. Plant, Cell & Environment, 35, 388-404. doi:10.1111/j.1365-3040.2011.02369.x
CrossrefPubMedGoogle Scholar

Pérez, M., Dominguez-López, I., & Lamuela-Raventós, R. M. (2023). The chemistry behind the folin-ciocalteu method for the estimation of (poly) phenol content in food: total phenolic intake in a mediterranean dietary pattern. Journal of Agricultural and Food Chemistry, 71(46), 17543-17553. doi:10.1021/acs.jafc.3c04022
CrossrefPubMedPMCGoogle Scholar

Petry, R. D., Ortega, G. G., & Silva, W. B. (2001). Flavonoid content assay: influence of the reagent concentration and reaction time on the spectrophotometric behavior of the aluminium chloride-flavonoid complex. Die Pharmazie, 56(6), 465-470.
PubMedGoogle Scholar

Poór, P. (2020). Effects of salicylic acid on the metabolism of mitochondrial reactive oxygen species in plants. Biomolecules, 10(2), 341. doi:10.3390/biom10020341
CrossrefPubMedPMCGoogle Scholar

Rempfer, C., Hoernstein, S. N. W., van Gessel, N., Graf, A. W., Spiegelhalder, R. P., Bertolini, A., Bohlender, L. L., Parsons, J., Decker, E. L., & Reski, R. (2024). Differential prolyl hydroxylation by six Physcomitrella prolyl-4 hydroxylases. bioRxiv, 2024-03. doi:10.1101/2024.03.26.586753
CrossrefGoogle Scholar

Sangwan, S., Shameem, N., Yashveer, S., Tanwar, H., Parray, J. A., Jatav, H. S., Sharma, S., Punia, H., Sayyed, R. Z., & Almalki, W. H. (2022). Role of salicylic acid in combating heat stress in plants: insights into modulation of vital processes. Frontiers in Bioscience-Landmark, 27(11), 310. doi:10.31083/j.fbl2711310
CrossrefPubMedGoogle Scholar

Sytar, O., Kosyan, A., Taran, N., & Smetanska, I. (2014). Anthocyanin's as marker for selection of buckwheat plants with high rutin content. Gesunde Pflanzen, 66(4), 165-169. doi:10.1007/s10343-014-0331-z
CrossrefGoogle Scholar

Yuan, S., & Lin, H.-H. (2008). Minireview: role of salicylic acid in plant abiotic stress. Zeitschrift Für Naturforschung C, 63(5-6), 313-320. doi:10.1515/znc-2008-5-601
CrossrefPubMedGoogle Scholar

Smirnoff, N., & Wheeler, G. L. (2000). Ascorbic acid in plants: biosynthesis and function. Critical Reviews in Biochemistry and Molecular Biology, 35(4), 291-314. doi:10.1080/10409230008984166
CrossrefPubMedGoogle Scholar

Smirnov, O., & Kosyk, O. (2011). Flavonoidy, rutyn, kvertsetyn. Biosyntez, struktura, funktsii [Flavonoids, rutin, and quercetin. Biosynthesis, structure, functions]. Bulletin of Lviv University. Biological Series, 56, 3-11. (In Ukrainian)
Google Scholar

Smirnov, O., Kosyan, A., & Kosyk, O. (2012). The Cycocel effect on flavonoids content and phenylalanine ammonia-lyase (PAL) activity in buckwheat (Fagopyrum esculentum Moench.) plant. Studia Biologica, 6(3), 247-252. doi:10.30970/sbi.0603.230
CrossrefGoogle Scholar

Song, W., Shao, H., Zheng, A., Zhao, L., & Xu, Y. (2023). Advances in roles of salicylic acid in plant tolerance responses to biotic and abiotic stresses. Plants, 12(19), 3475. doi:10.3390/plants12193475
CrossrefPubMedPMCGoogle Scholar

Torun, H., Novák, O., Mikulík, J., Strnad, M., & Ayaz, F. A. (2022). The effects of exogenous salicylic acid on endogenous phytohormone status in Hordeum vulgare L. under salt stress. Plants, 11(5), 618. doi:10.3390/plants11050618
CrossrefPubMedPMCGoogle Scholar

Yang, W., Zhou, Z., & Chu, Z. (2023). Emerging roles of salicylic acid in plant saline stress tolerance. International Journal of Molecular Sciences, 24(4), 3388. doi:10.3390/ijms24043388
CrossrefPubMedPMCGoogle Scholar

Zandi, P., & Schnug, E. (2022). Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology, 11(2), 155. doi:10.3390/biology11020155
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Myroslava Kobyletska, Yana Kavulych

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.