BIOPHYSICAL FEATURES OF USING A RECOMBINATION SENSOR TO DETECT LACTATE DEHYDROGENASE: SENSITIVITY MECHANISMS ANALYSIS

Oleksii Kozinetz, Bogdan Sus, Olga Tsymbalyuk, Sergii Litvinenko


DOI: http://dx.doi.org/10.30970/sbi.1802.773

Abstract


Background. Most pathologies of the human body (in particular, malignant neoplasms, myocardial hypoxia, liver diseases, etc.) are accompanied by a violation of the integrity of cells in target tissues and the release of intracellular macromolecules into the extracellular environment. Thus, an important diagnostic and prognostic indicator is the level of activity of certain enzymes in blood serum, which are normally intracellular. One of the most promising areas of modern medical electronics and biophysics is the development and optimization of enzyme screening methods in biological fluids. In this study, we aimed to investigate the biophysical characteristics of using a recombination sensor for determining LDH activity in biological fluids.
Materials and Methods. Experiments were performed on preparations of standard human blood serum. The reference determination of lactate dehydrogenase activity was carried out photometrically based on the change (decrease) in the concentration of the reduced form of the NADH coenzyme. The passage of the lactate dehydrogenase reaction was experimentally recorded by measuring the photocurrent of a silicon structure with a buried barrier under light irradiation from the region of strong absorption (λ = 532 nm).
Results. The biophysical features of the device were studied. The detection of lactate dehydrogenase becomes possible due to the transfer of a hydrogen ion from nicotinamide adenine dinucleotide (NADH) to pyruvate, as a result of which lactate and NAD+ are formed. The effect is explained by the local electrostatic influence on the parameters of the recombination centers in the near-surface bending zone near the silicon surface, which leads to a change in the surface recombination rate.
Conclusions. Our approach can be considered as a promising way to develop a highly sensitive method for the detection of lactate dehydrogenase. It has been experi­mentally shown that effective detection is possible in two changes at the surface ben­ding of the deep barrier silicon substrate zone.


Keywords


lactate dehydrogenase, enzymatic activity, deep silicon barrier, initial band bending, photoelectrical transducer, surface recombination velocity, biomedical diagnostic

Full Text:

PDF

References


Atta, N. F., Abdel Gawad, S. A., El-Ads, E. H., El-Gohary, A. R. M., & Galal, A. (2017). A new strategy for NADH sensing using ionic liquid crystals-carbon nanotubes/nano-magnetite composite platform. Sensors and Actuators B: Chemical, 251, 65-73. doi:10.1016/j.snb.2017.05.026
CrossrefGoogle Scholar

Brisson, L., Bański, P., Sboarina, M., Dethier, C., Danhier, P., Fontenille, M.-J., Van Hée, V. F., Vazeille, T., Tardy, M., Falces, J., Bouzin, C., Porporato, P. E., Frédérick, R., Michiels, C., Copetti, T., & Sonveaux, P. (2016). Lactate dehydrogenase B controls lysosome activity and autophagy in cancer. Cancer Cell, 30(3), 418-431. doi:10.1016/j.ccell.2016.08.005
CrossrefPubMedGoogle Scholar

Du, M., Yu, T., Zhan, Q., Li, H., Zou, Y., Geng, M., Meng, T., & Xie, Z. (2022). Development of a novel lactate dehydrogenase A inhibitor with potent antitumor activity and immune activation. Cancer Science, 113(9), 2974-2985. doi:10.1111/cas.15468
CrossrefPubMedPMCGoogle Scholar

Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., & Han, Y. (2018). Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy. Cancer Medicine, 7(12), 6124-6136. doi:10.1002/cam4.1820
CrossrefPubMedPMCGoogle Scholar

Guo, Q., Zhu, Z., Wang, J., Huang, W., Zhang, C., Zeng, J., Zhao, H., Qi, T., Zhou, W., Zhang, T., Zhang, C., & Xiao, F. (2021). Preparation, stability and commutability of candidate reference materials for lactate dehydrogenase (LDH). Clinical Biochemistry, 91, 45-51. doi:10.1016/j.clinbiochem.2021.02.002
CrossrefPubMedGoogle Scholar

Kanaoka, K., & Minami, S. (2023). Elevation of serum lactate dehydrogenase during methylprednisolone pulse therapy as a predictor of high mortality in acute respiratory failure: a single-center, retrospective study. SAGE Open Medicine, 11, 20503121231195993. doi:10.1177/20503121231195993
CrossrefPubMedPMCGoogle Scholar

Kannan, B., Jahanshahi-Anbuhi, S., Pelton, R. H., Li, Y., Filipe, C. D., & Brennan, J. D. (2015). Printed paper sensors for serum lactate dehydrogenase using pullulan-based inks to immobilize reagents. Analytical Chemistry, 87(18), 9288-9293. doi:10.1021/acs.analchem.5b01923
CrossrefPubMedGoogle Scholar

Khan, A. A., Allemailem, K. S., Alhumaydhi, F. A., Gowder, S. J. T., & Rahmani, A. H. (2020). The biochemical and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism. Endocrine, Metabolic & Immune Disorders - Drug Targets, 20(6), 855-868. doi:10.2174/1871530320666191230141110
CrossrefPubMedGoogle Scholar

Kozinetz, A., Tsymbalyuk, O., & Litvinenko, S. (2023). Application of sensor structures based on a photoelectric transducer to determine the activity of aspartate and alanine aminotransferases in blood plasma. Biomedical Physics & Engineering Express, 9(4), 10.1088/2057-1976/acd55b. doi:10.1088/2057-1976/acd55b
CrossrefPubMedGoogle Scholar

Kozinetz, A., Tsymbalyuk, O., & Litvinenko, S. (2022). The first application of sensory structures based on photoelectric transducer for the study of enzymatic reactions. Studia Biologica, 16(4), 3-18. doi:10.30970/sbi.1604.698
CrossrefGoogle Scholar

Kozinetz, A., Tsymbalyuk, O., & Litvinenko, S. (2023). Application of sensor structures based on a photoelectric transducer to determin(e the activity of aspartate and alanine aminotransferases in blood plasma. Biomedical Physics & Engineering Express, 9(4), 045016. doi:10.1088/2057-1976/acd55b
CrossrefPubMedGoogle Scholar

Kozinetz, A., Sus, B., Tsymbalyuk, O., & Litvinenko, S. (2024). Photovoltaic recombination sensor as system for real-time determination of lactate dehydrogenase activity. Sensing and Bio-Sensing Research, 43, 100620. doi:10.1016/j.sbsr.2024.100620
CrossrefGoogle Scholar

Litvinenko, S. V., Kozinetz, A. V., & Skryshevsky, V. A. (2015). Concept of photovoltaic transducer on a base of modified p-n junction solar cell. Sensors and Actuators A: Physical, 224, 30-35. doi:10.1016/j.sna.2015.01.014
CrossrefGoogle Scholar

McNaught, A. D., & Wilkinson, A. (1997). Compendium of chemical terminology. Oxford: Blackwell Science.
Google Scholar

Mutyala, S., & Mathiyarasu, J. (2016). A highly sensitive NADH biosensor using nitrogen doped graphene modified electrodes. Journal of Electroanalytical Chemistry, 775, 329-336. doi:10.1016/j.jelechem.2016.06.011
CrossrefGoogle Scholar

Papaneophytou, C., Zervou, M.-E., & Theofanous, A. (2021). Optimization of a colorimetric assay to determine lactate dehydrogenase B activity using design of experiments. SLAS Discovery, 26(3), 383-399. doi:10.1177/2472555220956589
CrossrefPubMedGoogle Scholar

Petrelli, F., Ardito, R., Merelli, B., Lonati, V., Cabiddu, M., Seghezzi, S., Barni, S., & Ghidini, A. (2019). Prognostic and predictive role of elevated lactate dehydrogenase in patients with melanoma treated with immunotherapy and BRAF inhibitors: a systematic review and meta-analysis. Melanoma Research, 29(1), 1-12. doi:10.1097/CMR.0000000000000520
CrossrefPubMedGoogle Scholar

Valvona, C. J., Fillmore, H. L., Nunn, P. B., & Pilkington, G. J. (2016). The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor. Brain Pathology, 26(1), 3-17. doi:10.1111/bpa.12299
CrossrefPubMedPMCGoogle Scholar

Van Wilpe, S., Koornstra, R., Den Brok, M., De Groot, J. W., Blank, C., De Vries, J., Gerritsen, W., & Mehra, N. (2020). Lactate dehydrogenase: a marker of diminished antitumor immunity. Oncoimmunology, 9(1), 1731942. doi:10.1080/2162402X.2020.1731942
CrossrefPubMedPMCGoogle Scholar

Vanderlinde, R. E. (1985). Measurement of total lactate dehydrogenase activity. Annals of Clinical & Laboratory Science, 15(1), 13-31.
Google Scholar

Vlasiou, M., Nicolaidou, V., & Papaneophytou, C. (2023). Targeting lactate dehydrogenase-B as a strategy to fight cancer: identification of potential inhibitors by in silico analysis and in vitro screening. Pharmaceutics, 15(10), 2411. doi:10.3390/pharmaceutics15102411
CrossrefPubMedPMCGoogle Scholar

Wu, Y., Lu, C., Pan, N., Zhang, M., An, Y., Xu, M., Zhang, L., Guo, Y., & Tan, L. (2021). Serum lactate dehydrogenase activities as systems biomarkers for 48 types of human diseases. Scientific Reports, 11(1), 12997. doi:10.1038/s41598-021-92430-6
CrossrefPubMedPMCGoogle Scholar

Yang, L., Ren, X., Meng, X., Li, H., & Tang, F. (2011). Optical analysis of lactate dehydrogenase and glucose by CdTe quantum dots and their dual simultaneous detection. Biosensors & Bioelectronics, 26(8), 3488-3493. doi:10.1016/j.bios.2011.01.031
CrossrefPubMedGoogle Scholar

Zhou, Y., Qi, M., & Yang, M. (2022a). Current status and future perspectives of lactate dehydrogenase detection and medical implications: a review. Biosensors, 12(12), 1145. doi:10.3390/bios12121145
CrossrefPubMedPMCGoogle Scholar

Zhou, Y., Qi, M., & Yang, M. (2022b). Fluorescence determination of lactate dehydrogenase activity based on silicon quantum dots. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 268, 120697. doi:10.1016/j.saa.2021.120697
CrossrefPubMedGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Oleksii Kozinetz, Bogdan Sus, Olga Tsymbalyuk, Sergii Litvinenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.