ANAEROBIC GLYCOLYSIS AND OXIDATIVE STRESS INTERRELATION IN ERYTHROCYTES UNDER ADMINISTRATION OF CORNUS MAS L. FRUIT EXTRACTS TO RATS WITH STREPTOZOTOCIN-INDUCED DIABETES MELLITUS
DOI: http://dx.doi.org/10.30970/sbi.1802.777
Abstract
Background. In diabetes mellitus (DM), analysis of changes in the biochemical profile of erythrocytes is the important stage of complex scientific research to clarify the mechanism of action of medicinal products based on plant raw materials. The fruits of Cornus mas L. are widely known. The biologically active compounds of these fruits show multiple biological effects. However, the effect of the fruit extracts of cornelian cherry on the functional state of erythrocytes in diabetes has not been sufficiently studied. The high glucose concentration in erythrocytes induces various structural and functional changes, which lead to numerous disturbances in their metabolism. Glucose transported into erythrocytes by facilitated diffusion via GLUT2 undergoes catabolic breakdown in anaerobic glycolysis (90 % of all glucose) and pentose phosphate pathway (the rest 10 %). ATP and reduced coenzymes of NADH + H+ and NADPH + H+ formed due to metabolism participate in maintaining the structure of hemoglobin. Enzymes of the antioxidant defense system, which prevent hemoglobin oxidation into methemoglobin, are especially important. Hyperglycemia and the development of oxidative stress in diabetes are the cause of a decrease in the activity of antioxidant enzymes and the accumulation of ligand forms of hemoglobin (HbCO2, MetHb, HbA1c). Therefore, the work aimed to investigate the effect of extracts of red and yellow fruits of Cornus mas L. on the content of end products of the glycolytic breakdown of glucose in erythrocytes and biochemical markers of the antioxidant status of these blood cells in rats with streptozotocin-induced diabetes.
Materials and Methods. DM 1 type in animals was induced by intraperitoneal injection of streptozotocin. Experiments were performed on male Wistar rats, who, from the 10th day after diabetes induction, were administered per os extracts of red and yellow fruits of the cornelian cherry and loganic acid obtained from yellow fruits at a dose of 20 mg/kg of body weight for 14 days. On the 24th day of the experiment, the rats were decapitated under ether anesthesia, and blood was taken. The content of pyruvate and lactate (as the end products of anaerobic glycolysis) and L-lactate dehydrogenase activity were determined in plasma and erythrocytes, as well as biochemical markers of the antioxidant status of erythrocytes (activity of superoxide dismutase, catalase and glutathione peroxidase, level of reduced glutathione, TBA-reactive substances, concentration of oxidative modifications of proteins and advanced oxidation protein products).
Results. The activity of catalase, superoxide dismutase, glutathione peroxidase and the concentration of reduced glutathione significantly increased against the decrease in the content of oxidative modifications of proteins, advanced oxidation protein products, TBA-reactive substances, pyruvate, L-lactate, and lactate dehydrogenase in rats with DM after administration of the fruit extracts of the cornelian cherry. Noteworthy, these biochemical indicators made it possible to assess the intensity of anaerobic glycolysis and the antioxidant status of blood erythrocytes in streptozotocin diabetes.
Conclusions. Extracts of Cornus mas L. fruits might be potential natural drugs for the treatment of metabolic disorders in diabetes, as they have a corrective effect on the catabolic breakdown of glucose and the antioxidant defense system of erythrocytes, preventing the development of oxidative stress. It should be pointed out that the extract of red fruits of cornelian cherry showed the best effect among the studied extracts in normalizing these indicators.
Keywords
Full Text:
PDFReferences
Anastasiadi, A. T., Arvaniti, V. Z., Hudson, K. E., Kriebardis, A. G., Stathopoulos, C., D'Alessandro, A., Spitalnik, S. L., & Tzounakas, V. L. (2024). Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein & Cell, 15(5), 315-330. doi:10.1093/procel/pwae001 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress - a concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. doi:10.1016/j.jsps.2015.03.013 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Boretsky, Yu. R., Hlozhyk, I. Z., Hashchyshyn, V. R., Tymochko-Voloshyn, R. I., Paraniak, N. M., Shavel, K. E., Stefanyshyn, M. V., Verbin, I. V., Ivashchenko, V. F., Gayda, G. Z., & Gonchar, M. V. (2023). Lactic acid as a systemic product and biomarker of physical load. Studia Biologica, 17(1), 115-130. doi:10.30970/sbi.1701.703 Crossref ● Google Scholar | ||||
| ||||
Brodyak, I. V., Chaban, M. O., Moroz, A. A., Kucharska, A. Z., & Sybirna, N. O. (2023). The effect of extracts of fruits of different cultivars of Cornus mas L. on plasma lipid profile in experimental diabetes mellitus. Studia Biologica, 17(1), 35-48. doi:10.30970/sbi.1701.704 Crossref ● Google Scholar | ||||
| ||||
Buko, V., Zavodnik, I., Kanuka, O., Belonovskaya, E., Naruta, E., Lukivskaya, O., Kirko, S., Budryn, G., Żyżelewicz, D., Oracz, J., & Sybirna, N. (2018). Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food & Function, 9(3), 1850-1863. doi:10.1039/c7fo01823a Crossref ● PubMed ● Google Scholar | ||||
| ||||
Chakravarty, S., & Rizvi, S. I. (2011). Day and night GSH and MDA levels in healthy adults and effects of different doses of melatonin on these parameters. International Journal of Cell Biology, 2011, 404591. doi:10.1155/2011/404591 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chaudhry, R., & Varacallo, M. (2023). Biochemistry, glycolysis.[Updated 2023 Aug 8]. StatPearls [Internet]. Treasure Island(FL): StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK482303 Google Scholar | ||||
| ||||
Demkiv, O., Gayda, G., Stasyuk, N., Moroz, A., Serkiz, R., Kausaite-Minkstimiene, A., Gonchar, M., & Nisnevitch, M. (2023). Flavocytochrome b2-mediated electroactive nanoparticles for developing amperometric L-lactate biosensors. Biosensors, 13(6), 587. doi:10.3390/bios13060587 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
DiMeglio, L. A., Evans-Molina, C., & Oram, R. A. (2018). Type 1 diabetes. Lancet, 391(10138), 2449-2462. doi:10.1016/s0140-6736(18)31320-5 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dzydzan, O., Bila, I., Kucharska, A. Z., Brodyak, I., & Sybirna, N. (2019). Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food & Function, 10(10), 6459-6472. doi:10.1039/c9fo00515c Crossref ● PubMed ● Google Scholar | ||||
| ||||
Dzydzan, O., Brodyak, I., Sokół-Łętowska, A., Kucharska, A. Z., & Sybirna, N. (2020). Loganic acid, an iridoid glycoside extracted from Cornus mas L. fruits, reduces of carbonyl/oxidative stress biomarkers in plasma and restores antioxidant balance in leukocytes of rats with streptozotocin-induced diabetes mellitus. Life, 10(12), 349. doi:10.3390/life10120349 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Dzydzan, O., Brodyak, I., Strugała-Danak, P., Strach, A., Kucharska, A. Z., Gabrielska, J., & Sybirna, N. (2022). Biological activity of extracts of red and yellow fruits of Cornus mas L. - an in vitro evaluation of antioxidant activity, inhibitory activity against α-glucosidase, acetylcholinesterase, and binding capacity to human serum albumin. Molecules, 27(7), 2244. doi:10.3390/molecules27072244 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Farhana, A., & Lappin, S. L. (2023). Biochemistry, lactate dehydrogenase. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK557536 PubMed ● Google Scholar | ||||
| ||||
Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3), 143-151. doi:10.1016/0009-8981(91)90067-m Crossref ● PubMed ● Google Scholar | ||||
| ||||
Gray, L. R., Tompkins, S. C., & Taylor, E. B. (2014). Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences, 71(14), 2577-2604. doi:10.1007/s00018-013-1539-2 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Halestrap, A. P. (2012). The monocarboxylate transporter family-structure and functional characterization. IUBMB Life, 64(1), 1-9. doi:10.1002/iub.573 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Herance, J. R., Ciudin, A., Lamas-Domingo, R., Aparicio-Gómez, C., Hernández, C., Simó, R., & Palomino-Schätzlein, M. (2023). The footprint of type 1 diabetes on red blood cells: a metabolomic and lipidomic study. Journal of Clinical Medicine, 12(2), 556. doi:10.3390/jcm12020556 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics, 21, 130-132. Retrieved from http://nopr.niscpr.res.in/handle/123456789/19932 Google Scholar | ||||
| ||||
Katsuki, H., Kawano, C., Yoshida, T., Kanayuki, H., & Tanaka, S. (1961). The determination of pyruvic acid by 2,4-dinitrophenylhydrazine method. Analytical Biochemistry, 2(5), 433-440. doi:10.1016/0003-2697(61)90047-1 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Kehm, R., Baldensperger, T., Raupbach, J., & Höhn, A. (2021). Protein oxidation - formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biology, 42, 101901. doi:10.1016/j.redox.2021.101901 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Klymenko, S., Kucharska, A. Z., Sokół-Łętowska, A., Piórecki, N., Przybylska, D., & Grygorieva, O. (2021). Iridoids, flavonoids, and antioxidant capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis fruits. Biomolecules, 11(6), 776. doi:10.3390/biom11060776 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kolb, H., Kempf, K., Röhling, M., Lenzen-Schulte, M., Schloot, N. C., & Martin, S. (2021). Ketone bodies: from enemy to friend and guardian angel. BMC Medicine, 19, 313. doi:10.1186/s12916-021-02185-0 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kuchurka, О. М., Chaban, М. O., Dzydzan, O. V., Brodyak, I. V., & Sybirna, N. O. (2022). Leukocytes in type 1 diabetes mellitus: the changes they undergo and induce. Studia Biologica, 16(1), 47-66. doi:10.30970/sbi.1601.674 Crossref ● Google Scholar | ||||
| ||||
Kuhn, V., Diederich, L., Stevenson Keller IV, T.C., Kramer, C. M., Lückstädt, W., Panknin, C., Suvorava, T., Isakson, B. E., Kelm, M., & Cortese-Krott, M. M. (2017). Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxidants & Redox Signaling, 26(13), 718-742. doi:10.1089/ars.2016.6954 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kuznetsova, M. Yu., Konechna, R. T., Galenova, T. I., Novikov, V. P., & Savchuk, O. M. (2016). Antidiabetic properties of widespread in Ukraine medicinal plants. Ukrainian biopharmaceutical journal, 2(43), 40-44. doi:10.24959/ubphj.16.25 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Melekh, B., Ilkiv, I., Lozynskyi, A., & Sklyarov, A. (2017). Antioxidant enzyme activity and lipid peroxidation in rat liver exposed to celecoxib and lansoprazole under epinephrine-induced stress. Journal of Applied Pharmaceutical Sciences and Research, 7, 94-99. doi:10.7324/japs.2017.71013 Crossref ● Google Scholar | ||||
| ||||
Orrico, F., Laurance, S., Lopez, A. C., Lefevre, S. D., Thomson, L., Möller, M. N., & Ostuni, M. A. (2023). Oxidative stress in healthy and pathological red blood cells. Biomolecules, 13(8), 1262. doi:10.3390/biom13081262 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Rocha, S., Gomes, D., Lima, M., Bronze-da-Rocha, E., & Santos-Silva, A. (2015). Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radical Research, 49(8), 990-1003. doi:10.3109/10715762.2015.1028402 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rodrigues Oliveira, S. M., Rebocho, A., Ahmadpour, E., Nissapatorn, V., & De Lourdes Pereira, M. (2023). Type 1 diabetes mellitus: a review on advances and challenges in creating insulin producing devices. Micromachines, 14(1), 151. doi:10.3390/mi14010151 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Satriyasa, B. K. (2016). Aqueous extract of purple sweet potato tubers decrease MDA and increase SOD2 in kidney of diabetic rats. Bali Medical Journal, 5(3), 388-390. doi:10.15562/bmj.v5i3.273 Crossref ● Google Scholar | ||||
| ||||
Seniv, M. B., Dzydzan, O. V., Brodyak, I. V., Kucharska, A. Z., & Sybirna N. O. (2021). Antioxidant effect of extract of yellow fruits of cornelian cherry (Cornus mas L.) in rats' leukocytes under streptozotocin-induced diabetes mellitus. Studia Biologica, 15(1), 15-26. doi:10.30970/sbi.1501.645 Crossref ● Google Scholar | ||||
| ||||
Strugała, P., Dzydzan, O., Brodyak, I., Kucharska, A. Z., Kuropka, P., Liuta, M., Kaleta-Kuratewicz, K., Przewodowska, A., Michałowska, D., Gabrielska, J., & Sybirna, N. (2019). Antidiabetic and antioxidative potential of the Blue Congo variety of purple potato extract in streptozotocin-induced diabetic rats. Molecules, 24(17), 3126. doi:10.3390/molecules24173126 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Taylor, E. L., Armstrong, K. R., Perrett, D., Hattersley, A. T., & Winyard, P. G. (2015). Optimisation of an advanced oxidation protein products assay: its application to studies of oxidative stress in diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2015, 496271. doi:10.1155/2015/496271 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vašková, J., Kočan, L., Vaško, L., & Perjési, P. (2023). Glutathione-related enzymes and proteins: a review. Molecules, 28(3), 1447. doi:10.3390/molecules28031447 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wang, Y., Yang, P., Yan, Z., Liu, Z., Ma, Q., Zhang, Z., Wang, Y., & Su, Y. (2021). The relationship between erythrocytes and diabetes mellitus. Journal of Diabetes Research, 2021, 6656062. doi:10.1155/2021/6656062 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Wu, Y., Dong, Y., Atefi, M., Liu, Y., Elshimali, Y., & Vadgama, J. V. (2016). Lactate, a neglected factor for diabetes and cancer interaction. Mediators of Inflammation, 2016, 6456018. doi:10.1155/2016/6456018 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. doi:10.3390/molecules24061123 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Anna Moroz, Iryna Brodyak, Alicja Z. Kucharska, Natalia Sybirna
This work is licensed under a Creative Commons Attribution 4.0 International License.