ANAEROBIC GLYCOLYSIS AND OXIDATIVE STRESS INTERRELATION IN ERYTHROCYTES UNDER ADMINISTRATION OF CORNUS MAS L. FRUIT EXTRACTS TO RATS WITH STREPTOZOTOCIN-INDUCED DIABETES MELLITUS

Anna Moroz, Iryna Brodyak, Alicja Z. Kucharska, Natalia Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1802.777

Abstract


Background. In diabetes mellitus (DM), analysis of changes in the biochemical profile of erythrocytes is the important stage of complex scientific research to clarify the mechanism of action of medicinal products based on plant raw materials. The fruits of Cornus mas L. are widely known. The biologically active compounds of these fruits show multiple biological effects. However, the effect of the fruit extracts of cornelian cherry on the functional state of erythrocytes in diabetes has not been sufficiently studied. The high glucose concentration in erythrocytes induces various structural and functional changes, which lead to numerous disturbances in their metabolism. Glucose transported into erythrocytes by facilitated diffusion via GLUT2 undergoes catabolic breakdown in anaerobic glycolysis (90 % of all glucose) and pentose phosphate pathway (the rest 10 %). ATP and reduced coenzymes of NADH + H+ and NADPH + H+ formed due to metabolism participate in maintaining the structure of hemoglobin. Enzymes of the antioxidant defense system, which prevent hemoglobin oxidation into methemoglobin, are especially important. Hyperglycemia and the development of oxidative stress in diabetes are the cause of a decrease in the activity of antioxidant enzymes and the accumulation of ligand forms of hemoglobin (HbCO2, MetHb, HbA1c). Therefore, the work aimed to investigate the effect of extracts of red and yellow fruits of Cornus mas L. on the content of end products of the glycolytic breakdown of glucose in erythrocytes and biochemical markers of the antioxidant status of these blood cells in rats with streptozotocin-induced diabetes.
Materials and Methods. DM 1 type in animals was induced by intraperitoneal injection of streptozotocin. Experiments were performed on male Wistar rats, who, from the 10th day after diabetes induction, were administered per os extracts of red and yellow fruits of the cornelian cherry and loganic acid obtained from yellow fruits at a dose of 20 mg/kg of body weight for 14 days. On the 24th day of the experiment, the rats were decapitated under ether anesthesia, and blood was taken. The content of pyruvate and lactate (as the end products of anaerobic glycolysis) and L-lactate dehydrogenase activity were determined in plasma and erythrocytes, as well as biochemical markers of the antioxidant status of erythrocytes (activity of superoxide dismutase, catalase and glutathione peroxidase, level of reduced glutathione, TBA-reactive substances, concentration of oxidative modifications of proteins and advanced oxidation protein products).
Results. The activity of catalase, superoxide dismutase, glutathione peroxidase and the concentration of reduced glutathione significantly increased against the decrease in the content of oxidative modifications of proteins, advanced oxidation protein products, TBA-reactive substances, pyruvate, L-lactate, and lactate dehydrogenase in rats with DM after administration of the fruit extracts of the cornelian cherry. Noteworthy, these biochemical indicators made it possible to assess the intensity of anaerobic glycolysis and the antioxidant status of blood erythrocytes in streptozotocin diabetes.
Conclusions. Extracts of Cornus mas L. fruits might be potential natural drugs for the treatment of metabolic disorders in diabetes, as they have a corrective effect on the catabolic breakdown of glucose and the antioxidant defense system of erythrocytes, preventing the development of oxidative stress. It should be pointed out that the extract of red fruits of cornelian cherry showed the best effect among the studied extracts in normalizing these indicators.


Keywords


diabetes mellitus, erythrocytes, extracts of Cornus mas L. fruit, pyruvate, lactate, antioxidant enzymes

Full Text:

PDF

References


Anastasiadi, A. T., Arvaniti, V. Z., Hudson, K. E., Kriebardis, A. G., Stathopoulos, C., D'Alessandro, A., Spitalnik, S. L., & Tzounakas, V. L. (2024). Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein & Cell, 15(5), 315-330. doi:10.1093/procel/pwae001
CrossrefPubMedPMCGoogle Scholar

Asmat, U., Abad, K., & Ismail, K. (2016). Diabetes mellitus and oxidative stress - a concise review. Saudi Pharmaceutical Journal, 24(5), 547-553. doi:10.1016/j.jsps.2015.03.013
CrossrefPubMedPMCGoogle Scholar

Boretsky, Yu. R., Hlozhyk, I. Z., Hashchyshyn, V. R., Tymochko-Voloshyn, R. I., Paraniak, N. M., Shavel, K. E., Stefanyshyn, M. V., Verbin, I. V., Ivashchenko, V. F., Gayda, G. Z., & Gonchar, M. V. (2023). Lactic acid as a systemic product and biomarker of physical load. Studia Biologica, 17(1), 115-130. doi:10.30970/sbi.1701.703
CrossrefGoogle Scholar

Brodyak, I. V., Chaban, M. O., Moroz, A. A., Kucharska, A. Z., & Sybirna, N. O. (2023). The effect of extracts of fruits of different cultivars of Cornus mas L. on plasma lipid profile in experimental diabetes mellitus. Studia Biologica, 17(1), 35-48. doi:10.30970/sbi.1701.704
CrossrefGoogle Scholar

Buko, V., Zavodnik, I., Kanuka, O., Belonovskaya, E., Naruta, E., Lukivskaya, O., Kirko, S., Budryn, G., Żyżelewicz, D., Oracz, J., & Sybirna, N. (2018). Antidiabetic effects and erythrocyte stabilization by red cabbage extract in streptozotocin-treated rats. Food & Function, 9(3), 1850-1863. doi:10.1039/c7fo01823a
CrossrefPubMedGoogle Scholar

Chakravarty, S., & Rizvi, S. I. (2011). Day and night GSH and MDA levels in healthy adults and effects of different doses of melatonin on these parameters. International Journal of Cell Biology, 2011, 404591. doi:10.1155/2011/404591
CrossrefPubMedPMCGoogle Scholar

Chaudhry, R., & Varacallo, M. (2023). Biochemistry, glycolysis.[Updated 2023 Aug 8]. StatPearls [Internet]. Treasure Island(FL): StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK482303
Google Scholar

Demkiv, O., Gayda, G., Stasyuk, N., Moroz, A., Serkiz, R., Kausaite-Minkstimiene, A., Gonchar, M., & Nisnevitch, M. (2023). Flavocytochrome b2-mediated electroactive nanoparticles for developing amperometric L-lactate biosensors. Biosensors, 13(6), 587. doi:10.3390/bios13060587
CrossrefPubMedPMCGoogle Scholar

DiMeglio, L. A., Evans-Molina, C., & Oram, R. A. (2018). Type 1 diabetes. Lancet, 391(10138), 2449-2462. doi:10.1016/s0140-6736(18)31320-5
CrossrefPubMedGoogle Scholar

Dzydzan, O., Bila, I., Kucharska, A. Z., Brodyak, I., & Sybirna, N. (2019). Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food & Function, 10(10), 6459-6472. doi:10.1039/c9fo00515c
CrossrefPubMedGoogle Scholar

Dzydzan, O., Brodyak, I., Sokół-Łętowska, A., Kucharska, A. Z., & Sybirna, N. (2020). Loganic acid, an iridoid glycoside extracted from Cornus mas L. fruits, reduces of carbonyl/oxidative stress biomarkers in plasma and restores antioxidant balance in leukocytes of rats with streptozotocin-induced diabetes mellitus. Life, 10(12), 349. doi:10.3390/life10120349
CrossrefPubMedPMCGoogle Scholar

Dzydzan, O., Brodyak, I., Strugała-Danak, P., Strach, A., Kucharska, A. Z., Gabrielska, J., & Sybirna, N. (2022). Biological activity of extracts of red and yellow fruits of Cornus mas L. - an in vitro evaluation of antioxidant activity, inhibitory activity against α-glucosidase, acetylcholinesterase, and binding capacity to human serum albumin. Molecules, 27(7), 2244. doi:10.3390/molecules27072244
CrossrefPubMedPMCGoogle Scholar

Farhana, A., & Lappin, S. L. (2023). Biochemistry, lactate dehydrogenase. In StatPearls. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK557536
PubMedGoogle Scholar

Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3), 143-151. doi:10.1016/0009-8981(91)90067-m
CrossrefPubMedGoogle Scholar

Gray, L. R., Tompkins, S. C., & Taylor, E. B. (2014). Regulation of pyruvate metabolism and human disease. Cellular and Molecular Life Sciences, 71(14), 2577-2604. doi:10.1007/s00018-013-1539-2
CrossrefPubMedPMCGoogle Scholar

Halestrap, A. P. (2012). The monocarboxylate transporter family-structure and functional characterization. IUBMB Life, 64(1), 1-9. doi:10.1002/iub.573
CrossrefPubMedGoogle Scholar

Herance, J. R., Ciudin, A., Lamas-Domingo, R., Aparicio-Gómez, C., Hernández, C., Simó, R., & Palomino-Schätzlein, M. (2023). The footprint of type 1 diabetes on red blood cells: a metabolomic and lipidomic study. Journal of Clinical Medicine, 12(2), 556. doi:10.3390/jcm12020556
CrossrefPubMedPMCGoogle Scholar

Kakkar, P., Das, B., & Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase. Indian Journal of Biochemistry and Biophysics, 21, 130-132. Retrieved from http://nopr.niscpr.res.in/handle/123456789/19932
Google Scholar

Katsuki, H., Kawano, C., Yoshida, T., Kanayuki, H., & Tanaka, S. (1961). The determination of pyruvic acid by 2,4-dinitrophenylhydrazine method. Analytical Biochemistry, 2(5), 433-440. doi:10.1016/0003-2697(61)90047-1
CrossrefPubMedGoogle Scholar

Kehm, R., Baldensperger, T., Raupbach, J., & Höhn, A. (2021). Protein oxidation - formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biology, 42, 101901. doi:10.1016/j.redox.2021.101901
CrossrefPubMedPMCGoogle Scholar

Klymenko, S., Kucharska, A. Z., Sokół-Łętowska, A., Piórecki, N., Przybylska, D., & Grygorieva, O. (2021). Iridoids, flavonoids, and antioxidant capacity of Cornus mas, C. officinalis, and C. mas × C. officinalis fruits. Biomolecules, 11(6), 776. doi:10.3390/biom11060776
CrossrefPubMedPMCGoogle Scholar

Kolb, H., Kempf, K., Röhling, M., Lenzen-Schulte, M., Schloot, N. C., & Martin, S. (2021). Ketone bodies: from enemy to friend and guardian angel. BMC Medicine, 19, 313. doi:10.1186/s12916-021-02185-0
CrossrefPubMedPMCGoogle Scholar

Kuchurka, О. М., Chaban, М. O., Dzydzan, O. V., Brodyak, I. V., & Sybirna, N. O. (2022). Leukocytes in type 1 diabetes mellitus: the changes they undergo and induce. Studia Biologica, 16(1), 47-66. doi:10.30970/sbi.1601.674
CrossrefGoogle Scholar

Kuhn, V., Diederich, L., Stevenson Keller IV, T.C., Kramer, C. M., Lückstädt, W., Panknin, C., Suvorava, T., Isakson, B. E., Kelm, M., & Cortese-Krott, M. M. (2017). Red blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxidants & Redox Signaling, 26(13), 718-742. doi:10.1089/ars.2016.6954
CrossrefPubMedPMCGoogle Scholar

Kuznetsova, M. Yu., Konechna, R. T., Galenova, T. I., Novikov, V. P., & Savchuk, O. M. (2016). Antidiabetic properties of widespread in Ukraine medicinal plants. Ukrainian biopharmaceutical journal, 2(43), 40-44. doi:10.24959/ubphj.16.25 (In Ukrainian)
CrossrefGoogle Scholar

Melekh, B., Ilkiv, I., Lozynskyi, A., & Sklyarov, A. (2017). Antioxidant enzyme activity and lipid peroxidation in rat liver exposed to celecoxib and lansoprazole under epinephrine-induced stress. Journal of Applied Pharmaceutical Sciences and Research, 7, 94-99. doi:10.7324/japs.2017.71013
CrossrefGoogle Scholar

Orrico, F., Laurance, S., Lopez, A. C., Lefevre, S. D., Thomson, L., Möller, M. N., & Ostuni, M. A. (2023). Oxidative stress in healthy and pathological red blood cells. Biomolecules, 13(8), 1262. doi:10.3390/biom13081262
CrossrefPubMedPMCGoogle Scholar

Rocha, S., Gomes, D., Lima, M., Bronze-da-Rocha, E., & Santos-Silva, A. (2015). Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radical Research, 49(8), 990-1003. doi:10.3109/10715762.2015.1028402
CrossrefPubMedGoogle Scholar

Rodrigues Oliveira, S. M., Rebocho, A., Ahmadpour, E., Nissapatorn, V., & De Lourdes Pereira, M. (2023). Type 1 diabetes mellitus: a review on advances and challenges in creating insulin producing devices. Micromachines, 14(1), 151. doi:10.3390/mi14010151
CrossrefPubMedPMCGoogle Scholar

Satriyasa, B. K. (2016). Aqueous extract of purple sweet potato tubers decrease MDA and increase SOD2 in kidney of diabetic rats. Bali Medical Journal, 5(3), 388-390. doi:10.15562/bmj.v5i3.273
CrossrefGoogle Scholar

Seniv, M. B., Dzydzan, O. V., Brodyak, I. V., Kucharska, A. Z., & Sybirna N. O. (2021). Antioxidant effect of extract of yellow fruits of cornelian cherry (Cornus mas L.) in rats' leukocytes under streptozotocin-induced diabetes mellitus. Studia Biologica, 15(1), 15-26. doi:10.30970/sbi.1501.645
CrossrefGoogle Scholar

Strugała, P., Dzydzan, O., Brodyak, I., Kucharska, A. Z., Kuropka, P., Liuta, M., Kaleta-Kuratewicz, K., Przewodowska, A., Michałowska, D., Gabrielska, J., & Sybirna, N. (2019). Antidiabetic and antioxidative potential of the Blue Congo variety of purple potato extract in streptozotocin-induced diabetic rats. Molecules, 24(17), 3126. doi:10.3390/molecules24173126
CrossrefPubMedPMCGoogle Scholar

Taylor, E. L., Armstrong, K. R., Perrett, D., Hattersley, A. T., & Winyard, P. G. (2015). Optimisation of an advanced oxidation protein products assay: its application to studies of oxidative stress in diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2015, 496271. doi:10.1155/2015/496271
CrossrefPubMedPMCGoogle Scholar

Vašková, J., Kočan, L., Vaško, L., & Perjési, P. (2023). Glutathione-related enzymes and proteins: a review. Molecules, 28(3), 1447. doi:10.3390/molecules28031447
CrossrefPubMedPMCGoogle Scholar

Wang, Y., Yang, P., Yan, Z., Liu, Z., Ma, Q., Zhang, Z., Wang, Y., & Su, Y. (2021). The relationship between erythrocytes and diabetes mellitus. Journal of Diabetes Research, 2021, 6656062. doi:10.1155/2021/6656062
CrossrefPubMedPMCGoogle Scholar

Wu, Y., Dong, Y., Atefi, M., Liu, Y., Elshimali, Y., & Vadgama, J. V. (2016). Lactate, a neglected factor for diabetes and cancer interaction. Mediators of Inflammation, 2016, 6456018. doi:10.1155/2016/6456018
CrossrefPubMedPMCGoogle Scholar

Xu, D., Hu, M.-J., Wang, Y.-Q., & Cui, Y.-L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. doi:10.3390/molecules24061123
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Anna Moroz, Iryna Brodyak, Alicja Z. Kucharska, Natalia Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.