GLYCOPROTEINS OF ERYTHROCYTE MEMBRANES AND THE STRUCTURE OF THEIR CARBOHYDRATE DETERMINANTS

N. O. Sybirna, T. V. Buslyk


DOI: http://dx.doi.org/10.30970/sbi.0301.020

Abstract


In this review modern data on key glycoproteins of erythrocyte membranes structure has been analysed. Lectine characteristics which are widely used for study into their oligosaccharide structures are given below.


Keywords


glycoproteins, erythrocyte membranes, lectins

References


1. Антонюк В.О. Лектини та їх сировинні джерела. Львів: ПП "Кварт", 2005. 554 с.

2. Молчанова Т.П. Основы молекулярной организации белков мембраны эритроцитов и их дефекты, приводящие к гемолитическим анемиям. Гематология и трансфузиология, 1989; 7: 32-41.

3. Николаева Т.Л., Оловникова Н.И. Система Кидд и ее трансфузиологическое значение. Гематология и трансфузиология, 2006; 51 (1): 33-35.

4. Себякин Ю.Л., Евстигнеева P.M. Гликоконьюгаты, углеводные цепи гликопротеинов: структура, биосинтез и функции в тканях животных. Успехи биол. химии, 1988; 28: 213-225.

5. Сторожок С.А., Соловьев С.В. Структурные и функциональные особенности цитоскелета мембраны эритроцита. Вопросы мед. химии, 1992; 2: 14-17.

6. Хьюз Р. Гликопротеины: Москва: Мир, 1985. 140 с.

7. Hadengue A.L., Del-Pino M., Simon A., Levenson J. Erythrocyte disagregation shear stress, sialic acid, and cellaging in humans. Hypertension, 1998; 32: 324-330.
https://doi.org/10.1161/01.HYP.32.2.324
PMid:9719062

8. Aminoff D. The role sialoglycoconjugates in the ageing and sequestration of red cells from circulation. Blood Cells, 1988; 14: 229-257.

9. Anderson R.A., Lovrien R.F. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature, 1984; 307 (16): 655-658.
https://doi.org/10.1038/307655a0
PMid:6694756

10. Anderson R.A., Marchesі V.T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by polyphosphoinositide. Nature, 1985; 318 (21): 295-298.
https://doi.org/10.1038/318295a0
PMid:2999606

11. Anstee D.J., Mawby W.J., Parsons S.F., Tanner M.J.A. Abnormal blood group Ss-active sialoglycoproteins in the membrane of Miltenberger class III, IV and V human erythrocytes. Biochem. J, 1979; 183: 193-203.
https://doi.org/10.1042/bj1830193
PMid:230820 PMCid:PMC1161547

12. Anstee D.J., Hemming N.J., Tanner MJ. Functional factors in the red cell membrane: interactions between the membrane and its underlying skeleton. Immunol. Invest, 1995; 24 (1-2): 187-198.
https://doi.org/10.3109/08820139509062772
PMid:7713582

13. Anstee D.J.,Cartron J.P. Toward an understanding of the red cell surface. Red cell immunohaematology towards its second century. ESTM. Tel Aviv, 1999: 12-44.

14. Arge P., Cartron J.P. Molecular biology of Rh antigens. Blood, 1991; 78: 551-563.

15. Bailly P., Cartron J.P., Wang D. et al. Herediatry stomatocytosis and Rh deficient patients exhibit distinct molecular defects. Blood, 1992; 50: 1624-1626.

16. Baranowski Т., Lisowska E., Morawiecki A. et al. Studies on blood group antigens M and N. III. Chemical composition of purified antigens. Arch. Immunol. Ther. Exp, 1959; 7: 15-27.

17. Beppu M., Hayashi Т., Hasegawa Т., Kikugawa K. Recognition of sialosaccharide chains of glycophorin on damaged erythrocytes by macrophage scavenger receptors. Biochim. Biophys. Acta, 1995; 1268 (1): 9-19.
https://doi.org/10.1016/0167-4889(95)00040-Y

18. Blanchard D., Dahr W., Hummel M. et al. Glycophorin В and С from human erythrocyte membranes. Purification and sequence analysis. J. Biol. Chem, 1987; 262 (12): 5808-5811.

19. Blumenfeld O.O., Huang C.H. Molecular genetics of the glycophoringene family, the antigens for MNSs blood groups: multiple generearrangements and modulation of splice site usage result in extensive diversification. Hum. Mutat, 1995; 6 (3): 199-209.
https://doi.org/10.1002/humu.1380060302
PMid:8535438

20. Bruce L.J., Groves J.D., Okubo Y., Thilaganathan В., Tanner MJ. Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) red blood cells. Blood, 1994; 84 (3): 916-922.

21. Bruce L.J., Pan R.-j., Cope D.L. et al. Altered Structure and Anion Transport Properties of Band 3 (AE1, SLC4A1) in Human Red Cells Lacking Glycophorin A. J. Biol. Chem, 2004; 279 (4): 2414-2420.
https://doi.org/10.1074/jbc.M309826200
PMid:14604989

22. Caldwell A.B. Proteins of the turkey erythrocyte membrane. Biochemistry, 1976; 15, (12): 2711-2718.
https://doi.org/10.1021/bi00657a035
PMid:938639

23. Carton J.P., Baily P., Le van Kim C. et al. Insights into the structure and function of membrane polypeptides carrying blood group antigens. Vox Sanguinis, 1998; 74: 29-64.
https://doi.org/10.1111/j.1423-0410.1998.tb05397.x

24. Cartron J.P., Rahuel С. Human erythrocyte glycophorins: protein and gene structure analyses. Trans. Med. Rev, 1992; 6 (2): 63-92.
https://doi.org/10.1016/S0887-7963(92)70158-8

25. Chasis J.A., Jensen R., Mohandas N. Erythrocyte membrane rigidity induced by glycophorin A-ligand interaction. Evidence for a ligand- induced association between glycophorin A and skeletal proteins. J. Clin. Invest,1995; 75: 1919-1926.
https://doi.org/10.1172/JCI111907
PMid:4008645 PMCid:PMC425549

26. Che A., Cherry RJ. Loss of rotational mobility of band 3 proteins in human erythrocyte membranes induced by antibodies to glycophorin A. Biophys. J, 1995. 68 (5): 1881-1887.
https://doi.org/10.1016/S0006-3495(95)80365-6

27. Claster S., White E., Woolworth V., Quntanilha A. Degradation of erythrocyte glycophorin results in increased membrane bound haemoglobin. Arch. Biochem. and Biophis, 1991; 285 (1): 147-152.
https://doi.org/10.1016/0003-9861(91)90342-G

28. Colin Y. Gerbich blood groups and minor glycophorins of human erythrocytes. Transfus. Clin. Biol, 1995; 2 (4): 259-268.
https://doi.org/10.1016/S1246-7820(05)80092-8

29. Colin Y., Rahuel C., London J. Isolation of cDNA clones for human erythrocyte glycophorin С. J. Biol. Chem, 1986; 261: 229-233.

30. Dahr W., Beyreuther K., Kordowicz M. N-terminal amino acid sequence of sialoglycoprotein D (glycophorin C) from human erythrocyte membrane. Eur. J. Biochem, 1982; 125: 57-62.
https://doi.org/10.1111/j.1432-1033.1982.tb06650.x
PMid:7106126

31. Dahr W., Uhlenbruck G. Structural properties of the human M and N blood group system antigen receptor sites. Hoppe-Seyler's Z. Physiol.Chem, 1978; 359: 835-843.
https://doi.org/10.1515/bchm2.1978.359.2.835
PMid:79537

32. DeLuca G.M., Donnell M.E., Carrigan D.J., Blackall D.P. Plasmodium falciparum merozoite adhesion is mediated by sialic acid. Biochem. Biophys. Res. Commun, 1996; 225 (3): 726-732.
https://doi.org/10.1006/bbrc.1996.1242
PMid:8780681

33. Dill K., Hu S., Berman E., Pavia A., Lacombe J.M. One and two-dimensional NMR studies of the N-terminal portion of glycophorin A at 11.7 tesla. J. Protein Chem, 1990; 9 (2): 129-136.
https://doi.org/10.1007/BF01025303

34. Dolan S.A., Proctor J.L., Ailing D.W. et al. Glycophorin В as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Моl. Biochem. Parasitol, 1994; 64: 55-63.
https://doi.org/10.1016/0166-6851(94)90134-1

35. Dzandu J.K., Dehmercy E. Phosphorylation of glycophorin A in membranes of intact human erythrocytes. Biochem. and Biophis. Res. Commun, 1985; 127 (3): 878-884.
https://doi.org/10.1016/S0006-291X(85)80025-5

36. Fronlich O., Macey R.I., Edwards Moulds J. et al. Urea transport deficiency in Jk(a b)erythrocytes. Am. J. Physiol, 1991; 260: 778-783.
https://doi.org/10.1152/ajpcell.1991.260.4.C778
PMid:1902060

37. Fukuda M., Lauffenburger M., Sasaki H. et al. Structures of novel sialilated O-linked oligosaccharides isolated from human erythrocyte glycophorins. J. Biol. Chem, 1987; 262 (25): 11952-11957.

38. Fukuda M., Osawa T. Isolation and characterization of a glycoprotein from human group О erythrocyte membrane. J. Biol. Chem., 1973; 2248 (14): 5100-5105.

39. Furthmayr H., Tomita M., Marchesi V.T. Fractionation of the major sialoglycopeptides of the human red cell membrane. Biochem, Biophys. Res. Commun, 1975; 65: 113-121.
https://doi.org/10.1016/S0006-291X(75)80068-4

40. Gahmberg C.G., Hermonen J. The human red cell sialoglycoprotein, glycophorin A: biosynthesis, glycosylation and interaction with external ligands. Indian J. of Biochem. and Biophis, 1988; 25 (1-2): 133-136.

41. Gahmberg C.G., Myllyla G., Leikola J. et al. Absence of the major sialoglycoprotein in membrane of human En(a-) erythrocytes and increased glycosylation of band 3. J. Biol. Chem, 1976; 251 (19): 6108-61016.

42. Gahmberg C.G., Tolvanen M. Why mammalian cell surface proteins are glycoproteins. TIBS, 1996; 21: 308-311.
https://doi.org/10.1016/0968-0004(96)10034-7

43. Hamaguchi H., Cleve H. Solubilization and comparative analysis of mammalian erythrocyte membrane glycoproteins. Biochem. and Biophis. Res. Commun, 1972; 47 (2): 459-464.
https://doi.org/10.1016/0006-291X(72)90736-X

44. Hassoun H., Hanada Т., Lutchman M. et al. Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band З (АЕ1) gene. Blood, 1998. 91 (6): 2146-2151.

45. Hemming N.J., Anstee D.J., Staricoff M.A. et al. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J. Biol. Chem, 1995; 270 (10): 5360-5366.
https://doi.org/10.1074/jbc.270.10.5360
PMid:7890649

46. High S., Tannet M.J.A. Human erythrocyte membrane sialoglycoprotein b. The cDNA sequence suggest the absence of a cleaved N-terminal signal sequence. Biochem. J, 1987; 243: 277-280.
https://doi.org/10.1042/bj2430277
PMid:3606576 PMCid:PMC1147844

47. Hyland C.A., Cherif Zahar B., Cowley N. et al. A novel single missense mutation identified along the RH50 gene in a composite heterozygote Rhnull blood donor of the regulator type. Blood, 1998; 91: 1458 1463.

48. Huang C-H., Blumenfeld O.O. Molecular basis of human major blood group antigens. Blood Cell Biochemistry, Plenum Press, 1995; 6: 153-188.
https://doi.org/10.1007/978-1-4757-9537-0_5

49. Huang C-H., Reid M.E., Xie S.S., Blumenfeld O.O. Human red blood ell Wright antigens: a genetic and evolutionary perspective on glycophorin A-band 3 interaction. Blood, 1996; 87 (9): 3942-3947.

50. Irimura T. Tsuji t, Tagami S., Yamamoto K., Osawa T. Structure of complex type sugar chain of human glycophorin A. Biochemistry, 1981; 20: 560-566.
https://doi.org/10.1021/bi00506a018
PMid:7213594

51. Knowles D.W., Chasis J.A., Evans E.A., Mohandas N. Cooperative action between band 3 and glycophorin A in human erythrocytes: immobilization of band 3 induced by antibodies to glycophorin A. Biophys. J, 1994; 66 (5): 1726-1732.
https://doi.org/10.1016/S0006-3495(94)80965-8

52. Krotkiewski H. The structure of glycophorins of animal erythrocytes. Glycoconjugate J, 1988; 5: P.35-48.
https://doi.org/10.1007/BF01048330

53. Kudo S., Fukuda M. Identification of a novel human glycophorin, glycophorin E, by isolation of genomic clones and complementary DNA clones utilizing polymerase chain reaction.J. Biol. Chem, 1990; 265: 1102-1110.

54. Landsteiner K., Levine P. A new agglutinable factor differentiating individual human bloods. Proc. Soc. Exp. Biol, 1927; 24: 600-602.
https://doi.org/10.3181/00379727-24-3483

55. Le-Van-Kim C., Filler V., Cartron J.P., Colin Y. Glycophorins С and D are generated by the use of alternative translation initiation sites. Blood, 1996; 88 (6): 2364-2365.

56. Lisowska E. The role glycosylation in protein antigenic properties: a rewier. Cell. Mol. Life Sci, 2002; 59: 445-455.
https://doi.org/10.1007/s00018-002-8437-3
PMid:11964123

57. Low P.S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein ineractions. Biochemica and Biophisica Acta, 1986; 846: 145-167.
https://doi.org/10.1016/0304-4157(86)90009-2

58. Lu Y.Q., Liu I.F., Huang C.N. et al. Elliptocytosis associated with an abnormal a glycophorin. Ann. Haematol, 1992; 35 (38): 106-110.
https://doi.org/10.1007/BF01698140
PMid:1511058

59. Marchesi V.T., Tillack T.W., Jackson R.L. et al. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc. Natl. Sci. USA, 1972; 69: 1445-1449.
https://doi.org/10.1073/pnas.69.6.1445
PMid:4504356 PMCid:PMC426722

60. Neil D.A., Reid M.E. The Rh blood group system: a review. Blood, 2000; 15 (2): 375-387.

61. Palek J., Jarolim P. Clinical expression and laboratory detection of red blood cell membrane protein mutations. Semin.Hematol, 1993; 30: 249-283.

62. Parsons S.F., Jones J., Anstee D.J. et al. A novel form of congenial dyserythropoietic anemia associated with deficiency of erythroid CD44 and a unique blood group henotype. Blood, 1994; 83: 680-688.

63. Paul R.W., Lee P.W.K. Glycophorin is the reovirus receptor on human erythrocytes. Virology, 1987; 159 (1): 94-101.
https://doi.org/10.1016/0042-6822(87)90351-5

64. Rearden A., Magnet A., Kudo S., Fukuda M. Glycophorin В and glycophorin E genes arose from the glycophorin A ancestral gene via two duplications during primate evolution. J. Biol. Chem, 1993; 268 (3): 2260-2267.

65. Redman C.M., Marsh W.L. The Kell blood group system and the McLeod phenotype. Semin.Hematol.1993; 30: 209-218.

66. Schwartz M.A., Brown E.J., Fazeli B. A 50 kDa integrin associated protein is required for integrin regulated calcium entry in endothelial cells. J. Biol. Chem, 1993; 268: 19931-19934.

67. Tell M.J. Lutheran antigens, lutheran regulatory genes and lutheran regulatory genes target. Blood Cell Biochemistry, 1995; 6: 281-297.
https://doi.org/10.1007/978-1-4757-9537-0_10

68. Tomita M., Furthmayr H., Marchesl V.T. Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides andcomplete amino acid sequence. Biochemistry, 1978; 17: 4756-4769.
https://doi.org/10.1021/bi00615a025
PMid:728384

69. Wu A.M. Carbohydrate structuralunits in glycoproteins and polysaccarides as important ligands for Gal and GalNAc reactive lectins. J. Biomed. Sci, 2003; 10: 676-688.
https://doi.org/10.1007/BF02256319
PMid:14631106


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.