POPULATION SIZE AND NESTING PECULIARITIES OF THE BLACK-HEADED GULL CHROICOCEPHALUS RIDIBUNDUS (LINNAEUS, 1766) ON THE TERRITORY OF WATER TREATMENT FACILITIES

Yulia Mamedova, Angela Chaplygina


DOI: http://dx.doi.org/10.30970/sbi.1802.770

Abstract


Background. Today, the black-headed gull inhabits man-made areas of wastewater treatment facilities (WTF) to comensate for the the reduction of natural aquatic and wetland habitats. Over the last decade, a nearly tenfold increase in its population has been recorded, despite a low reproduction rate. This fact indicates the lack of stability in the bird population, necessitating thorough research.
Materials and Methods. The analysis of the population size and biological charac­teristics of black-headed gulls involved censuses and observations at the WTF of the city of Kharkiv using conventional methods during the spring-summer periods of 2020–2021 and 2023.
Results. The population of the black-headed gull reached its peak in the third decade of May 2020 (2637 individuals) and 2023 (2124 individuals), as well as in the second decade of May 2021 (3949 individuals). The maximum nesting density was observed on sludge sites (SS) of wastewater treatment facilities that are most similar to natural habitats, where dried mud alternates with water patches and vegetation at the bottom and around the perimeter (Type V): 236.7±26.7 pairs/ha in 2020 and 242.9±28.5 pairs/ha in 2021. The majority of nests were found in the first decade of May 2021 and the third decade of May 2020.
The black-headed gull forms mixed-species, occasionally monospecific subcolonies. Nesting in association with it were: Sterna hirundo, Anas platyrhynchos, Spatula clypeata, Vanellus vanellus, Charadrius dubius, Himantopus himantopus, Fulica atra, Gallinula chloropus, and Aythya ferina.
The size of the complete black-headed gull clutch was 3.1±0.4 eggs (n = 190). The egg dimensions were 50.9±2.1 ´ 36.2±1.1, with a mass of 34.6±2.8 g. Regarding shell coloration, five types of background colors were identified. Mass egg laying occurred from the third decade of April to the first decade of May, constituting 40.3 % (n = 993) in 2020 and 62.3 % (n = 1757) in 2021. The egg-laying period extended from April to July, with the latest non-incubated clutches recorded in the first decade of July (3.07.2020). The first chicks were found in nests in the first decade of May, while mass hatching occurred in the second half of May. The latest registration dates of the birds on nesting territories were in the second decade of July for 2020 and 2023, and the first decade of August for 2022. The nesting season duration varied from 125 to 140 days in different years. Autumn migration commenced with summer relocations and concluded from late October to early November.
The reproductive success – the percentage of nestlings that fledged and successfully achieved flight – constituted 29.2 % (n = 2404 of laid eggs) in 2020, and 15.5 % (n = 6138) in 2021. The majority of offspring perished due to changes in water levels (prolonged rainfall or industrial wastewater discharge), predation, disturbance factors, etc.
Conclusion. The colonial nesting of the black-headed gull creates favorable conditions for the habitation and reproduction of various bird species, including rare ones, which is essential for their conservation.


Keywords


wastewater treatment facilities, black-headed gull, population size, nesting biology, aviafauna

Full Text:

PDF

References


Akimov, A. (Ed.). (2009). Chervona Knyha Ukrainy. Tvarynnyi svit [Red Book of Ukraine. Animal world]. Kyiv: Hlobalkonsaltynh. (In Ukrainian)
Google Scholar

Andersen, D. C., Sartoris, J. J., Thullen, J. S., & Reusch, P. G. (2003). The effects of bird use on nutrient removal in a constructed wastewater-treatment wetland. Wetlands, 23(2), 423-435. doi:10.1672/17-20
CrossrefGoogle Scholar

Afanasyev, V. T., Gavris, G. G., & Klestov, N. L. (1992). Ornitofauna Desnyanskoi poimi i yee okhrana [Ornithofauna of the Desnyansk floodplain and its protection]. Kyiv: Institute of Zoology of the Academy of Sciences of Ukraine. (In Russian)
Google Scholar

Banik, M. V., & Vergeles, Y. I. (2003). Dinamika soobschestv gnezdyaschihsya ptits Limanskoy ozernoy sistemyi i urochischa "Gorelaya Dolina" [Dynamics of nesting bird communities in the Limanskaya lake system and the Gorelaya Dolina tract]. In Pticy bassejna Severskogo Donca [Birds of the Seversky Donets basin] (Issue 8, pp. 7-10). Kharkiv. (In Russian)
Google Scholar

Banik, M. V. (2016). Katastrofichnyi stan populiatsii chaiky Vanellus vanellus u Kharkivskii oblasti [The catastrophic state of the gull population Vanellus vanellus in the Kharkiv region]. Troglodytes, 7, 130-139. (In Ukrainian)
Google Scholar

BirdLife International. (2004). Birds in Europe: population estimates, trends and conservation status. BirdLife Conservation Series No.12. Cambridge: BirdLife International
Google Scholar

BirdLife International. (2016). Species factsheet: Larus ridibundus. Retrieved from http://www.birdlife.org (accessed 28.07.2016).

Bukaciński, D., & Bukacińska, M. (2015). Kluczowe gatunki ptaków siewkowych na środkowej Wiśle: biologia, ekologia, ochrona i występowanie. Śmieszka Chroicocephalus ridibundus (T.2.). Warszawa: STOP.
Google Scholar

Chaplygina, А. B., Filatova, О. V., Litvin, L. М., & Nykyforov, V. V. (2023). The main factors and prospects for the restoration of biodiversity in technogenic territories (on the example of the Poltava Mining and Processing Plant). Biosystems Diversity, 31(1), 100-112. doi:10.15421/012311
CrossrefGoogle Scholar

Čížková, H., Květ, J., Comín, F. A., Laiho, R., Pokorný, J., & Pithart, D. (2011). Actual state of European wetlands and their possible future in the context of global climate change. Aquatic Sciences, 75(1), 3-26. doi:10.1007/s00027-011-0233-4
CrossrefGoogle Scholar

Dementieieva, Y. Y., Chaplygina, A. B., & Kratenko, R. I. (2023). Species composition of bird assemblages on waste landfills in Kharkov Region. Ornis Hungarica, 31(1), 48-61. doi:10.2478/orhu-2023-0003
CrossrefGoogle Scholar

Dementieieva, Y. Y., Muzyka, N., Muzyka, D., & Chaplygina, A. B. (2022). Аntibiotic resistance of bacterial cultures isolated from the feral pigeon (Columba livia) and starling (Sturnus vulgaris) at a solid waste landfill. Regulatory Mechanisms in Biosystems, 13(4), 443-448. doi:10.15421/022258
CrossrefGoogle Scholar

Fedun, O. М. Usov, O. Y., Gavris, G. G. (2015). Fedun, O. M., Usov, O. Ye., & Gavris, G. G. (2015). Breeding Avifauna of the waste water treatment plants, located in Northern Left-Bank Part of Ukraine. Vestnik Zoologii, 49(2), 125-134. doi:10.1515/vzoo-2015-001
CrossrefGoogle Scholar

Feng, C., & Liang, W. (2020). Behavioral responses of black-headed gulls (Chroicocephalus ridibundus) to artificial provisioning in China. Global Ecology and Conservation, 21, e00873. doi:10.1016/j.gecco.2019.e00873
CrossrefGoogle Scholar

Ferns, P. N., & Mudge, G. P. (2000). Abundance, diet and Salmonella contamination of gulls feeding at sewage outfalls. Water Research, 34(10), 2653-2660. doi:10.1016/s0043-1354(99)00427-3
CrossrefGoogle Scholar

Fesenko, G. V. (2022). Riznomanittia suchasnoi ornitofauny Ukrainy [Diversity of modern avifauna of Ukraine]. Kyiv: Akademperiodyka. (In Ukrainian)
Google Scholar

Grishchenko, V. N., Yablonovska-Grishchenko, E. D., & Gavrilyuk, M. N. (2013). Vidovoy sostav i struktura naseleniya vodoplavayuschih i okolovodnyih ptits, zimuyuchih na Dnepre v rayone Kanevskoy GES [Species composition and structure of community of waterfowls and waterbirds wintering on the Dnieper near the Kaniv hydroelectricpower station (central Ukraine)]. Berkut, 22(1), 1-13. Retrieved from http://www.aetos.kiev.ua/berkut/berkut22-1/fauna22-1-1b.pdf (In Russian)
Google Scholar

Hamdoune, I., Talmat-Chaouchi, N., & Marniche, F. (2023). New records of ectoparasites from the Black-headed Gull, Chroicocephalus ridibundus (Linnaeus, 1766) in Algeria. Zoology and Ecology, 126-133. doi:10.35513/21658005.2023.2.3
Crossref

Indykiewicz, P., Andrzejewska, M., Minias, P., Śpica, D., & Kowalski, J. (2021). Prevalence and antibiotic resistance of Campylobacter spp. in urban and rural black-headed gulls Chroicocephalus ridibundus. EcoHealth, 18(2), 147-156. doi:10.1007/s10393-021-01540-0
CrossrefPubMedPMCGoogle Scholar

Indykiewicz, P., Jakubas, D., Kowalczyk-Pecka, D., Kitowski, I., & Szady-Grad, M. (2023). Variability in fatty acids composition in eggs of an omnivorous waterbird, the black-headed gull Chroicocephalus ridibundus, foraging in different habitats. The European Zoological Journal, 90(2), 677-690. doi:10.1080/24750263.2023.2252838
CrossrefGoogle Scholar

Mamedova, Y. P. (2021). Hnizduvannia kriachka richkovoho (Sterna hirundo) na mulovykh maidanchykakh vodoochysnykh sporud mista Kharkova u 2020-2021 rokakh [Nesting of the common tern (Sterna hirundo) in the silt fields of the water treatment facilities of Kharkiv city in 2020-2021]. Biodiversity Ecology and Experimental Biology, 23(2), 68-76. doi:10.34142/2708-5848.2021.23.2.05 (In Ukrainian)
CrossrefGoogle Scholar

Mamedova, Y. P. & Chaplygina, A. B. (2022). Zustrichi ridkisnykh ptakhiv u Kharkivskii oblasti u 2019-2021 rokakh [Rare bird sightings in Kharkiv oblast in 2019-2021]. In Poshyrennia rarytetnykh vydiv bioty Ukrainy [Records of rare species of biota of Ukraine]. (Vol. 1, pp. 276-282). Kyiv: I. I. Schmalhausen Institute of Zoology of NAS of Ukraine; Chernivtsi: Druk Art. Retrieved from https://dspace.hnpu.edu.ua/server/api/core/bitstreams/aa49dfb9-bd4a-4d75-8154-a0af64f7d33d/content (In Ukrainian)
Google Scholar

Mamedova, Y. P., & Chaplygina, A. B. (2021). Breeding of black-winged stilt Himantopus himantopus in muddy sites of a wastewater treatment plant. Biosystems Diversity, 29(3), 286-293. doi:10.15421/012136
CrossrefGoogle Scholar

Mamedova, Y., Volkova, R., & Chaplygina, A. (2023). Species and structural diversity of flora and avifauna on the territory of urban water treatment facilities. Studia Biologica, 17(3), 111-138. doi:10.30970/sbi.1703.731
CrossrefGoogle Scholar

Martín-Vélez, V., van Leeuwen, C. H. A., Sánchez, M. I., Hortas, F., Shamoun-Baranes, J., Thaxter, C. B., Lens, L., Camphuysen, C. J., & Green, A. J. (2021). Spatial patterns of weed dispersal by wintering gulls within and beyond an agricultural landscape. Journal of Ecology, 109(4), 1947-1958. doi:10.1111/1365-2745.13619
CrossrefGoogle Scholar

Nadtochiy, A. S., & Osadchuk V. V. (2013). Ornitokompleks prudov-otstoynikov Bezlyudovskikh ochistnykh sooruzheniy [Ornithocomplex of the settling ponds of Bezlyudovsky wastewater treatment plants]. In I. T. Ruseva, V. P. Stoilovsky, A. I. Korzyukov, & D. A. Kivganov (Eds.), Ptitsy i okruzhayushchaya sreda [Birds and the environment] (pp. 134-137). Odessa: April. (In Russian)
Google Scholar

Pesotskaya, V. V., Chaplygina, A. B., Shupova, T. V., & Kratenko, R. I. (2020). Fruit and berry plants of forest belts as a factor of species diversity of ornithofauna during the breeding season and autumn migration period. Biosystems Diversity, 28(3), 290-297. doi:10.15421/012038
CrossrefGoogle Scholar

Piro, S., & Schmitz Ornés, A. (2021). Nest site tenacity and mate fidelity in the Black-headed Gull (Chroicocephalus ridibundus). Avian Research, 12(1), 63. doi:10.1186/s40657-021-00300-6
CrossrefGoogle Scholar

Poluda, A. M. (2023). Vplyv khimichnykh zasobiv zakhystu roslyn (pestytsydiv) na ptakhiv v ahrotsenozakh Ukrainy [The influence of chemical plant protection agents (pesticides) on birds in agrocenoses of Ukraine]. Biodiversity, Ecology and Experimental Biology. 25(2), 77-85. doi:10.34142/2708-5848.2023.25.2.09 (In Ukrainian)
CrossrefGoogle Scholar

Poprach, K., Machar, I., & Maton, K. (2016). Long-term decline in breeding abundance of Black-headed Gull (Chroicocephalus ridibundus) in the Czech Republic: a case study of a population trend at the Chomoutov lake. Ekológia (Bratislava), 35(4), 350-358. doi:10.1515/eko-2016-0028
CrossrefGoogle Scholar

Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2018). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849-873. doi:10.1111/brv.12480
CrossrefPubMedGoogle Scholar

Sebastián-González, E., & Green, A. J. (2016). Reduction of avian diversity in created versus natural and restored wetlands. Ecography, 39(12), 1176-1184. doi:10.1111/ecog.01736
CrossrefGoogle Scholar

Sidelnik, M. & Rapczyński J., (2022). Rekordowa koncentracja noclegowa śmieszki Chroicocephalus ridibundus w Warszawie. Ornis Polonica, 63, 67-71. Retrieved from http://ornis-polonica.pl/_pdf/OP_2022_1/07.pdf

Somov, N. N. (1897). Ornitologicheskaia fauna Kharkovsko guberni [Ornithological fauna of Kharkov province]. Kharkov: Tipografiia A. Darre. doi:10.5962/bhl.title.22596 (In Russian)
CrossrefGoogle Scholar

Tomiałojć, L. & Stawarczyk, T. (2003). Awifauna Polski: rozmieszczenie, liczebność i zmiany. Wrocław: PTPP pro Natura.
Google Scholar

Yarys, O., Chaplygina, A., & Kratenko, R. (2021). Breeding phenology of Common Redstart (Phoenicurus phoenicurus) and its reproduction biology with artificial nests in Northeastern Ukraine. Ornis Hungarica, 29(2), 122-138. doi:10.2478/orhu-2021-0024
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Yulia Mamedova, Angela Chaplygina

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.