EXPRESSION OF THE VEGF, Glut1 AND 6-PHOSPHOFRUCTO-2-KINASE/FRUCTOSE-2,6-BISPHOSPHATASE-3 AND -4 IN HUMAN CANCERS OF THE LUNG, COLON AND STOMACH

D. O. Minchenko, A. Y. Bobarykina, T. Y. Senchenko, O. V. Hubenya, K. Tsuchihara, A. Ochiai, M. Moenner, H. Esumi, O. H. Minchenko


DOI: http://dx.doi.org/10.30970/sbi.0301.018

Abstract


Expression of vascular endothelial growth factor (VEGF), glucose transporter Glut1 and two members of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase family (PFKFB-3 and PFKFB-4) in lung, colon and gastric cancers was studied. We have shown that expression of VEGF and glucose transporter Glut1 mRNA significantly increased in lung and colon cancers and much less – in gastric cancers comparing with corresponding normal tissues counterparts. However, expression of mRNA of glucose transporter Glut1 was increased in all tested cancers more distinctly as compared with mRNA for VEGF. Moreover, we have shown that PFKFB-3 and -4 mRNA were overexpressed in different cancers, but much more marked changes were observed in the lung and colon. PFKFB-4 protein level was also increased in different cancers being more clearly induced in the lung cancer. However, normal tissue counterparts from colon and stomach have much higher levels of PFKFB-4 protein, as compared to the lung. Thus, our data demonstrated that VEGF, glucose transporter Glut1, PFKFB-3 and PFKFB-4, known HIF-dependent genes, are overexpressed in malignant tumors from lung, colon and stomach and thus can participate in regulation of tumor growth.


Keywords


VEGF, Glut1, PFKFB, mRNA expression, human cancers

Full Text:

PDF

References


1. Atsumi T., Chesney J., Metz C. et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (iPFK-2; PFKFB3) in human cancers. Cancer Research, 2002; 62(20): 5881-5887.

2. Atsumi T., Nishio T., Niwa H. et al. Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes, 2005; 54(12): 3349-3357.
https://doi.org/10.2337/diabetes.54.12.3349
PMid:16306349

3. Bitlon R.L., Booker G.W. The subtle side to hypoxia inducible factor (HIFalpha) regulation. European Journal of Biochemistry, 2003; 270(5): 791-798.
https://doi.org/10.1046/j.1432-1033.2003.03446.x
PMid:12603312

4. Obach M., Navarro-Sabaté A., Caro J. et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J. Biol. Chem, 2004; 279(51):53562-53570.
https://doi.org/10.1074/jbc.M406096200
PMid:15466858

5. Chen J., Zhao S., Nakada K. et al. Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. American Journal of Patholology, 2003; 162(4): 1283-1291.
https://doi.org/10.1016/S0002-9440(10)63924-7

6. Chesney J. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Current Opinion Clinical Nutritional Metabolism Care, 2006; 9(5): 535-539.
https://doi.org/10.1097/01.mco.0000241661.15514.fb
PMid:16912547

7. Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumor. Nat. Rev. Cancer, 2008; 8: 705-713.
https://doi.org/10.1038/nrc2468
PMid:19143055

8. Ferrara N., Gerber H.-P., LeCouter J. The biology of VEGF and its receptors. Nature Medicine, 2003; 9(6): 669-676.
https://doi.org/10.1038/nm0603-669
PMid:12778165

9. Hirata T., Watanabe M., Miura S. et al. Inhibition of tumor cell growth by a specific 6-phosphofructo-2-kinase inhibitor, N-bromoacetylethanolamine phosphate, and its analogues. Biosciences. Biotechnology and Biochemistry, 2000; 64(10): 2047-2052.
https://doi.org/10.1271/bbb.64.2047
PMid:11129574

10. Hockel M., Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. Journal of National Cancer Institute, 2001; 93: 266-276.
https://doi.org/10.1093/jnci/93.4.266
PMid:11181773

11. Hopfl G., Ogunshola O., Gassmann M. HIFs and tumors - causes and consequences. American Journal of Pathology, 2004; 286(4): R608-R623.
https://doi.org/10.1152/ajpregu.00538.2003
PMid:15003941

12. Lu H., Forbes R.A., Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. Journal of Biological Chemistry, 2002 277(26): 23111-23115.
https://doi.org/10.1074/jbc.M202487200
PMid:11943784

13. Minchenko A.G., Leshchinsky I., Opentanova I. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Journal of Biological Chemistry, 2002; 277(8): 6183-6187.
https://doi.org/10.1074/jbc.M110978200
PMid:11744734 PMCid:PMC4518871

14. Minchenko O., Opentanova I., Caro J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 gene family (PFKFB-1-4) expression in vivo. FEBS Letters, 2003; 554(3): 264-270.
https://doi.org/10.1016/S0014-5793(03)01179-7

15. Minchenko O., Opentanova I., Minchenko D.O. et al. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 gene via hypoxia-inducible factor-1alpha activation. FEBS Letters, 2004; 576(1): 14-20.
https://doi.org/10.1016/j.febslet.2004.08.053
PMid:15474002

16. Okar D.A., Lange A.J. Fructose-2,6-biphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors, 1999; 10(1): 1-14.
https://doi.org/10.1002/biof.5520100101

17. Okar D.A., Manzano A., Navarro-Sabate A. et al. PFK-2/FBPase-2: maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends of Biochemical Science, 2001; 26 (1): 30-35.
https://doi.org/10.1016/S0968-0004(00)01699-6

18. Rider M.H., Bertrand L., Vertommen D. et al. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-head with a bifunctional enzyme that controls glycolysis. Biochemical Journal, 2004; 381 (Pt. 3): 561-579.
https://doi.org/10.1042/BJ20040752
PMid:15170386 PMCid:PMC1133864

19. Ryan H.E., Poloni M., McNulty W. et al. Hypoxia-inducible factor-1 is a positive factor in solid tumor growth. Cancer Research, 2000; 60(15): 4010-4015.

20. Schofield C.J., Ratcliffe P.J. Oxygen sensing by HIF hydroxylases. Nature Review. Molecular and Cellular Biology, 2004; 5(5): 343-354.
https://doi.org/10.1038/nrm1366
PMid:15122348

21. Semenza G.L. Targeting HIF-1 for cancer therapy. Nature Review Cancer, 2003; 3(2): 212-225.
https://doi.org/10.1038/nrc1187
PMid:13130303

22. Walenta S., Salameh A., Lyng H. et al. Correlation of high lactate levels in head and neck tumors with incidence of metastasis. American Journal of Patholology, 1997; 150(3): 409-415.

23. Wenger R.H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB Journal, 2002; 169(10): 1151-1162.
https://doi.org/10.1096/fj.01-0944rev
PMid:12153983

24. Wiesener M.S., Jurgensen J.S., Rosenberger C. et al. Widespread hypoxia-inducible expression of HIF-2 alpha in distinct cell populations of different organs. FASEB Journal, 2003; 17(2): 271-273.
https://doi.org/10.1096/fj.02-0445fje
PMid:12490539

25. Wykoff C.C., Pugh C.W., Maxwell P.H. et al. The HIF pathway: implications for patterns of gene expression in cancer. Novartis Found Symposium, 2001; 240: 212-225.
https://doi.org/10.1002/0470868716.ch15


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.