APPARENT DIFFUSION COEFFICIENT OF WATER IN EVALUATION OF TREATMENT RESPONSE IN ANIMAL BODY TUMORS

A. M. Babsky, Sh. Ju, N. Bansal


DOI: http://dx.doi.org/10.30970/sbi.0301.021

Abstract


The review summarizes the author’s results and literature data on the evaluation of diffusion-weighted magnetic resonance imaging (DWI) as a cancer biomarkers that reflects structural, cellular, apoptotic, and necrotic changes in tumor tissue. Diffusion measurements reflect the effective displacement of water molecules allowed to migrate for a given time. It was demonstrated that apparent diffusion coefficient (ADC) of water estimated from 1H DWI is important tool for the detection and characterization of neoplastic transformation as well as monitoring response to therapy. The possible mechanisms of pre- and post-therapy changes in water ADC in animal body tumors are discussed.


Keywords


tumor, chemotherapy, ADC, sodium, MRI

Full Text:

PDF

References


1. Walker M.D., Alexander E., Jr., Hunt W.E. et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg, 1978; 49: 333-343.
https://doi.org/10.3171/jns.1978.49.3.0333
PMid:355604

2. Chisholm R.A., Stenning S., Hawkins T.D. The accuracy of volumetric measurement of high-grade gliomas. Clin. Radiol, 1989; 40: 17-21.
https://doi.org/10.1016/S0009-9260(89)80007-8

3. James K., Eisenhauer E., Christian M. et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J. Natl. Cancer Inst, 1999; 91: 523-528.
https://doi.org/10.1093/jnci/91.6.523
PMid:10088622

4. Macdonald D.R., Cascino T.L., Schold S.C., Jr., Cairncross J.G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol, 1990; 8: 1277-1280.
https://doi.org/10.1200/JCO.1990.8.7.1277
PMid:2358840

5. Belhocine T., Steinmetz N., Green A., Rigo P. In vivo imaging of chemotherapy-induced apoptosis in human cancers. Ann. N. Y. Acad. Sci, 2003; 1010: 525-529.
https://doi.org/10.1196/annals.1299.097
PMid:15033784

6. Blankenberg F., Mari C., Strauss H.W. Imaging cell death in vivo. Q. J. Nucl. Med, 2003; 47: 337-348.

7. Nelson S.J., Cha S. Imaging glioblastoma multiforme. Cancer J, 2003; 9: 134-145.
https://doi.org/10.1097/00130404-200303000-00009

8. Ross B.D., Chenevert T.L., Garwood M. et al. Evaluation of (E)-2′-deoxy-2′-(fluoromethylene)cytidine on the 9L rat brain tumor model using MRI. NMR Biomed, 2003; 16: 67-76.
https://doi.org/10.1002/nbm.813
PMid:12730947

9. Spence A.M., Mankoff D.A., Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin. N. Am, 2003; 13: 717-739.
https://doi.org/10.1016/S1052-5149(03)00097-2

10. Van de Wiele C,. Lahorte C., Oyen W. et al. Nuclear medicine imaging to predict response to radiotherapy: a review. Int. J. Radiat. Oncol. Biol. Phys, 2003; 55: 5-15.
https://doi.org/10.1016/S0360-3016(02)04122-6

11. Ross B., Chenvert T., Kim B., Ben-Yoseph O. Magntic resonanse imaging and spectroscopy: application to experimental neurooncology. Quart. Magn. Resn. Biol. Med, 1994; 1: 89-106.

12. Thoeny H.C., De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur. Radiol, 2007; 17: 1385-1393.
https://doi.org/10.1007/s00330-006-0547-0
PMid:17206421

13. Geschwind J.F., Artemov D., Abraham S. et al. Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J. Vasc. Interv. Radiol, 2000;11: 1245-1255.
https://doi.org/10.1016/S1051-0443(07)61299-8

14. Stegman L.D., Rehemtulla A., Hamstra D.A. et al. Diffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy. Gene. Ther, 2000; 7: 1005-1010.
https://doi.org/10.1038/sj.gt.3301199
PMid:10871748

15. Chenevert T.L., Stegman L.D., Taylor J.M. et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J. Natl. Cancer Inst, 2000; 92: 2029-2036.
https://doi.org/10.1093/jnci/92.24.2029
PMid:11121466

16. DeVries A.F., Kremser C., Hein P.A. et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int. J. Radiat. Oncol. Biol. Phys, 2003; 56: 958-965.
https://doi.org/10.1016/S0360-3016(03)00208-6

17. Dzik-Jurasz A., Domenig C., George M. et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet, 2002; 360: 307-308.
https://doi.org/10.1016/S0140-6736(02)09520-X

18. Galons J.P., Altbach M.I., Paine-Murrieta G.D. et al. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia, 1999; 1: 113-117.
https://doi.org/10.1038/sj.neo.7900009
PMid:10933044 PMCid:PMC1508128

19. Thoeny H.C., De Keyzer F., Chen F. et al. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology, 2005; 234: 756-764.
https://doi.org/10.1148/radiol.2343031721
PMid:15734932

20. Chenevert T.L., McKeever P.E., Ross B.D. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin. Cancer Res, 1997; 3: 1457-1466.

21. Chinnaiyan A.M., Prasad U., Shankar S. et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl. Acad. Sci. U S A, 2000; 97: 1754-1759.
https://doi.org/10.1073/pnas.030545097
PMid:10677530 PMCid:PMC26508

22. Hakumaki J.M., Poptani H., Puumalainen A.M. et al. Quantitative 1H nuclear magnetic resonance diffusion spectroscopy of BT4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Cancer Res, 1998; 58: 3791-3799.

23. Poptani H., Puumalainen A.M., Grohn O.H. et al. Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer Gene. Ther, 1998; 5: 101-109.

24. Zhao M., Pipe J.G., Bonnett J., Evelhoch J.L. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo. Br. J. Cancer, 1996; 73:61-64.
https://doi.org/10.1038/bjc.1996.11
PMid:8554985

25. Hein P.A., Kremser C., Judmaier W. et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur. J. Radiol, 2003; 45: 214-222.
https://doi.org/10.1016/S0720-048X(02)00231-0

26. Kremser C., Judmaier W., Hein P. et al. Preliminary results on the influence of chemoradiation on apparent diffusion coefficients of primary rectal carcinoma measured by magnetic resonance imaging. Strahlenther Onkol, 2003; 179: 641-649.
https://doi.org/10.1007/s00066-003-1045-9
PMid:14628131

27. Mardor Y., Pfeffer R., Spiegelmann R. et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J. Clin. Oncol, 2003; 21:1094-1100.
https://doi.org/10.1200/JCO.2003.05.069
PMid:12637476

28. Ross B.D., Moffat B.A., Lawrence T.S. et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol. Cancer Ther, 2003; 2: 581-587.

29. Koh D.M., Collins D.J. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am. J. Roentgenol, 2007; 188: 1622-1635.
https://doi.org/10.2214/AJR.06.1403
PMid:17515386

30. Sykova E., Svoboda J., Polak J., Chvatal A. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J. Cereb. Blood. Flow. Metab, 1994; 14: 301-311.
https://doi.org/10.1038/jcbfm.1994.37
PMid:8113325

31. Sugahara T., Korogi Y., Kochi M. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging, 1999; 9: 53-60.
https://doi.org/10.1002/(SICI)1522-2586(199901)9:1<53::AID-JMRI7>3.0.CO;2-2

32. Lyng H., Haraldseth O., Rofstad E.K. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn. Reson. Med, 2000; 43: 828-836.
https://doi.org/10.1002/1522-2594(200006)43:6<828::AID-MRM8>3.3.CO;2-G

33. Guo A.C., Cummings T.J., Dash R.C., Provenzale J.M. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology, 2002; 224: 177-183.
https://doi.org/10.1148/radiol.2241010637
PMid:12091680

34. Szafer A., Zhong J., Gore J.C. Theoretical model for water diffusion in tissues. Magn. Reson. Med, 1995; 33: 697-712.
https://doi.org/10.1002/mrm.1910330516
PMid:7596275

35. Moffat B.A., Chenevert T.L., Lawrence T.S. et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl. Acad. Sci. U S A, 2005; 102: 5524-5529.
https://doi.org/10.1073/pnas.0501532102
PMid:15805192 PMCid:PMC555936

36. Babsky A.M., Topper S., Zhang H. et al. Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia. Magn. Reson. Med, 2008; 59: 485-491.
https://doi.org/10.1002/mrm.21568
PMid:18306401

37. Duong T.Q., Ackerman J.J., Ying H.S., Neil J.J. Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn. Reson. Med, 1998; 40: 1-13.
https://doi.org/10.1002/mrm.1910400102
PMid:9660547

38. Schepkin V., Chenevert T., Kuszpit K. et al. Sodium and proton diffusion MRI as biomarkers for early therapeutic response in subcutaneous tumors. Magn. Reson. Imaging, 2006; 24: 273-278.
https://doi.org/10.1016/j.mri.2005.12.004
PMid:16563956 PMCid:PMC3127446

39. Schepkin V.D., Lee K.C., Kuszpit K. et al. Proton and sodium MRI assessment of emerging tumor chemotherapeutic resistance. NMR Biomed, 2006; 19: 1035-1042.
https://doi.org/10.1002/nbm.1074
PMid:16894643 PMCid:PMC3140794

40. Babsky A., Hekmatyar S., Zhang H. et al. Application of 23Na MRI to monitor chemotherapeutic response in RIF-1 tumors. Neoplasia, 2005; 7: 658-666.
https://doi.org/10.1593/neo.05130
PMid:16026645 PMCid:PMC1501427

41. Babsky A., Hekmatyar S., Zhang H. et al. Predicting and monitoring response to chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea in subcutaneously implanted 9L glioma using the apparent diffusion coefficient of water and 23Na MRI. J. Magn. Reson. Imaging, 2006; 24: 132-139.
https://doi.org/10.1002/jmri.20615
PMid:16758478

42. Babsky A.M., Zhang H., Hekmatyar S.K. et al. Monitoring chemotherapeutic response in RIF-1 tumors by single-quantum and triple-quantum-filtered 23Na MRI, 1H diffusion-weighted MRI and PET imaging. Magn. Reson. Imaging, 2007; 25: 1015-1023.
https://doi.org/10.1016/j.mri.2006.11.004
PMid:17707164

43. Thoeny H.C., De Keyzer F., Chen F. et al. Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of the effects of combretastatin a-4 phosphate after repeated administration. Neoplasia, 2005; 7: 779-787.
https://doi.org/10.1593/neo.04748
PMid:16207480 PMCid:PMC1501887

44. Lemaire L., Howe F.A., Rodrigues L.M., Griffiths J.R. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. MAGMA, 1999; 8: 20-26.
https://doi.org/10.1016/S1352-8661(99)00002-2

45. Zhao M., Pipe J.G., Bonnett J., Evelhoch J.L. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo. Br. J. Cancer, 1996; 73: 61-64.
https://doi.org/10.1038/bjc.1996.11
PMid:8554985

46. Seierstad T., Folkvord S., Roe K. et al. Early changes in apparent diffusion coefficient predict the quantitative antitumoral activity of capecitabine, oxaliplatin, and irradiation in HT29 xenografts in athymic nude mice. Neoplasia, 2007; 9: 392-400.
https://doi.org/10.1593/neo.07154
PMid:17534444 PMCid:PMC1877980

47. Galons J.P., Altbach M.I., Paine-Murrieta G.D. et al. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia, 1999; 1: 113-117.
https://doi.org/10.1038/sj.neo.7900009
PMid:10933044 PMCid:PMC1508128

48. Morse D.L., Galons J.P., Payne C.M. et al. MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR Biomed, 2007; 20: 602-614.
https://doi.org/10.1002/nbm.1127
PMid:17265424

49. Thoeny H.C., De Keyzer F., Vandecaveye V. et al. Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology, 2005; 237: 492-499.
https://doi.org/10.1148/radiol.2372041638
PMid:16192323

50. Seierstad T., Roe K., Olsen D.R. Noninvasive monitoring of radiation-induced treatment response using proton magnetic resonance spectroscopy and diffusion-weighted magnetic resonance imaging in a colorectal tumor model. Radiother Oncol, 2007; 85: 187-194.
https://doi.org/10.1016/j.radonc.2007.09.009
PMid:17937968

51. Roth Y., Tichler T., Kostenich G. et al. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology, 2004; 232: 685-692.
https://doi.org/10.1148/radiol.2322030778
PMid:15215551

52. Schepkin V.D., Ross B.D., Chenevert T.L. et al. Sodium magnetic resonance imaging of chemotherapeutic response in a rat glioma. Magn. Reson. Med, 2005; 53: 85-92.
https://doi.org/10.1002/mrm.20332
PMid:15690506 PMCid:PMC3121241

53. Jordan B.F., Runquist M., Raghunand N. et al. Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of HIF-1alpha using PX-478. Neoplasia, 2005; 7: 475-4854.
https://doi.org/10.1593/neo.04628
PMid:15967100 PMCid:PMC1501160

54 Le Bihan D., Delannoy J., Levin R.L. Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology, 1989; 171: 853-857.
https://doi.org/10.1148/radiology.171.3.2717764
PMid:2717764

55. Morvan D., Leroy-Willig A. Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle. Magn. Reson. Imaging, 1995; 13: 943-948.
https://doi.org/10.1016/0730-725X(95)02006-F

56. Braunschweiger P.G. Effect of cyclophosphamide on the pathophysiology of RIF-1 solid tumors. Cancer Res, 1988; 48: 4206-4210.

57. Padhani A., Liu G., Koh D.M. et al. Diffusion weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia, 2009; 11: 102-125.
https://doi.org/10.1593/neo.81328
PMid:19186405 PMCid:PMC2631136

58. Boucher E., Corbinais S., Brissot P. et al. Treatment of hepatocellular carcinoma (HCC) with systemic chemotherapy combining epirubicin, cisplatinum and infusional 5-fluorouracil (ECF regimen). Cancer Chemother. Pharmacol, 2002; 50: 305-308.
https://doi.org/10.1007/s00280-002-0503-x
PMid:12357305

59. Iwamiya T., Sawada S., Ohta Y. Repeated arterial infusion chemotherapy for inoperable hepatocellular carcinoma using an implantable drug delivery system. Cancer Chemother. Pharmacol, 1994; 33 Suppl: S134-138.
https://doi.org/10.1007/BF00686685

60. Yanase K., Yoshiji H., Ikenaka Y. et al. Synergistic inhibition of hepatocellular carcinoma growth and hepatocarcinogenesis by combination of 5-fluorouracil and angiotensin-converting enzyme inhibitor via anti-angiogenic activities. Oncol. Rep, 2007; 17: 441-446.
https://doi.org/10.3892/or.17.2.441

61. Helmer K.G., Meiler M.R., Sotak C.H., Petruccelli J.D. Comparison of the return-to-the-origin probability and the apparent diffusion coefficient of water as indicators of necrosis in RIF-1 tumors. Magn. Reson. Med, 2003; 49: 468-478.
https://doi.org/10.1002/mrm.10400
PMid:12594749

62. Chenevert T.L., Stegman L.D., Taylor J.M. et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J. Natl. Cancer Inst, 2000; 92: 2029-2036.
https://doi.org/10.1093/jnci/92.24.2029
PMid:11121466

63. Tozer G.M., Kanthou C., Parkins C.S., Hill S.A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol, 2002; 83: 21-38.
https://doi.org/10.1046/j.1365-2613.2002.00211.x
PMid:12059907 PMCid:PMC2517662

64. Welsh S., Williams R., Kirkpatrick L. et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther, 2004; 3: 233-244

65. Chinnaiyan A.M., Prasad U., Shankar S. et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl. Acad. Sci. U S A, 2000; 97: 1754-1759.
https://doi.org/10.1073/pnas.030545097
PMid:10677530 PMCid:PMC26508

66. Lyseng-Williamson K.A., Fenton C. Docetaxel: a review of its use in metastatic breast cancer. Drugs, 2005; 65: 2513-2531.
https://doi.org/10.2165/00003495-200565170-00007
PMid:16296875

67. Chenevert T., McKeever P., Ross B. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin. Cancer. Res, 1997; 3: 1457-1466.

68. Ross B., Chenevert T., Rehemtulla A. Magnetic resonance imaging in cancer research. Eur. J. Cancer, 2002; 38: 2147-2156.
https://doi.org/10.1016/S0959-8049(02)00387-8

69. Ross B., Moffat B., Lawrence T. et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol. Cancer Ther, 2003; 2: 581-587.

70. Ross B.D., Zhao Y.J., Neal E.R. et al. Contributions of cell kill and posttreatment tumor growth rates to the repopulation of intracerebral 9L tumors after chemotherapy: an MRI study. Proc. Natl. Acad. Sci. U S A, 1998; 95: 7012-7017.
https://doi.org/10.1073/pnas.95.12.7012
PMid:9618530 PMCid:PMC22721

71. Winter P.M., Poptani H., Bansal N. Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on single-quantum- and triple-quantum-filtered 23Na and 31P nuclear magnetic resonance of the subcutaneously implanted 9L glioma. Cancer Res, 2001; 61: 2002-2007.

72. Steen R.G., Tamargo R.J., McGovern K.A. et al. In vivo 31P nuclear magnetic resonance spectroscopy of subcutaneous 9L gliosarcoma: effects of tumor growth and treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea on tumor bioenergetics and histology. Cancer Res, 1988; 48: 676-681.

73. Steen R.G. Response of solid tumors to chemotherapy monitored by in vivo 31P nuclear magnetic resonance spectroscopy: a review. Cancer Res, 1989; 49: 4075-4085.

74. Ameer G.A., Crumpler E.T., Langer R. Cell-killing potential of a water-soluble radical initiator. Int. J. Cancer, 2001; 93: 875-879.
https://doi.org/10.1002/ijc.1424
PMid:11519051

75. Dzik-Jurasz A., Domenig C., George M. et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet, 2002; 360: 307-308.
https://doi.org/10.1016/S0140-6736(02)09520-X

76. Mardor Y., Roth Y., Lidar Z. et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res, 2001; 61: 4971-4973.

77. Yuan Y.H., Xiao E.H., Liu J.B. et al. Characteristics and pathological mechanism on magnetic resonance diffusion-weighted imaging after chemoembolization in rabbit liver VX-2 tumor model. World J. Gastroenterol, 2007; 13: 5699-5706.
https://doi.org/10.3748/wjg.v13.i43.5699
PMid:17963295 PMCid:PMC4171255

78. Yuan Y.H., Xiao E.H., Liu J.B. et al. Gene expression and MR diffusion-weighted imaging after chemoembolization in rabbit liver VX-2 tumor model. World J. Gastroenterol, 2008; 14: 5557-5563.
https://doi.org/10.3748/wjg.14.5557
PMid:18810775 PMCid:PMC2746344

79. Momparler R.L., Karon M., Siegel S.E., Avila F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res, 1976; 36: 2891-2895.

80. Kim H., Morgan D.E., Buchsbaum D.J. et al. Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res, 2008; 68: 8369-8376.
https://doi.org/10.1158/0008-5472.CAN-08-1771
PMid:18922909 PMCid:PMC2597015

81. Jennings D., Hatton B.N., Guo J. et al. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia, 2002; 4: 255-262.
https://doi.org/10.1038/sj.neo.7900225
PMid:11988845 PMCid:PMC1531699

82. Vogel-Claussen J., Gimi B., Artemov D., Bhujwalla Z.M. Diffusion-weighted and macromolecular contrast enhanced MRI of tumor response to antivascular therapy with ZD6126. Cancer Biol. Ther, 2007; 6: 1469-1475.
https://doi.org/10.4161/cbt.6.9.4634
PMid:17881899

83. Micheletti G., Poli M., Borsotti P. et al. Vascular-targeting activity of ZD6126, a novel tubulin-binding agent. Cancer Res, 2003; 63: 1534-1537.

84. Dev S.B., Caban J.B., Nanda G.S. et al. Magnetic resonance studies of laryngeal tumors implanted in nude mice: effect of treatment with bleomycin and electroporation. Magn. Reson. Imaging, 2002; 20: 389-394.
https://doi.org/10.1016/S0730-725X(02)00517-9

85. Kamm Y.J., Heerschap A., Rosenbusch G. et al. 5-Fluorouracil metabolite patterns in viable and necrotic tumor areas of murine colon carcinoma determined by 19F NMR spectroscopy. Magn. Reson. Med, 1996; 36: 445-450.
https://doi.org/10.1002/mrm.1910360317

86. Koh D.M., Scurr E., Collins D. et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am. J. Roentgenol, 2007; 188: 1001-1008.
https://doi.org/10.2214/AJR.06.0601
PMid:17377036

87. Poptani H., Bansal N,. Graham R.A. et al. Detecting early response to cyclophosphamide treatment of RIF-1 tumors using selective multiple quantum spectroscopy (SelMQC) and dynamic contrast enhanced imaging. NMR Biomed, 2003; 16: 102-111.
https://doi.org/10.1002/nbm.816
PMid:12730951


Refbacks

  • There are currently no refbacks.


Copyright (c) 2009 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.