APPARENT DIFFUSION COEFFICIENT OF WATER IN EVALUATION OF TREATMENT RESPONSE IN ANIMAL BODY TUMORS
DOI: http://dx.doi.org/10.30970/sbi.0301.021
Abstract
The review summarizes the author’s results and literature data on the evaluation of diffusion-weighted magnetic resonance imaging (DWI) as a cancer biomarkers that reflects structural, cellular, apoptotic, and necrotic changes in tumor tissue. Diffusion measurements reflect the effective displacement of water molecules allowed to migrate for a given time. It was demonstrated that apparent diffusion coefficient (ADC) of water estimated from 1H DWI is important tool for the detection and characterization of neoplastic transformation as well as monitoring response to therapy. The possible mechanisms of pre- and post-therapy changes in water ADC in animal body tumors are discussed.
Keywords
Full Text:
PDFReferences
1. Walker M.D., Alexander E., Jr., Hunt W.E. et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J. Neurosurg, 1978; 49: 333-343. | |
| |
2. Chisholm R.A., Stenning S., Hawkins T.D. The accuracy of volumetric measurement of high-grade gliomas. Clin. Radiol, 1989; 40: 17-21. | |
| |
3. James K., Eisenhauer E., Christian M. et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J. Natl. Cancer Inst, 1999; 91: 523-528. | |
| |
4. Macdonald D.R., Cascino T.L., Schold S.C., Jr., Cairncross J.G. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol, 1990; 8: 1277-1280. | |
| |
5. Belhocine T., Steinmetz N., Green A., Rigo P. In vivo imaging of chemotherapy-induced apoptosis in human cancers. Ann. N. Y. Acad. Sci, 2003; 1010: 525-529. | |
| |
6. Blankenberg F., Mari C., Strauss H.W. Imaging cell death in vivo. Q. J. Nucl. Med, 2003; 47: 337-348. | |
| |
7. Nelson S.J., Cha S. Imaging glioblastoma multiforme. Cancer J, 2003; 9: 134-145. | |
| |
8. Ross B.D., Chenevert T.L., Garwood M. et al. Evaluation of (E)-2′-deoxy-2′-(fluoromethylene)cytidine on the 9L rat brain tumor model using MRI. NMR Biomed, 2003; 16: 67-76. | |
| |
9. Spence A.M., Mankoff D.A., Muzi M. Positron emission tomography imaging of brain tumors. Neuroimaging Clin. N. Am, 2003; 13: 717-739. | |
| |
10. Van de Wiele C,. Lahorte C., Oyen W. et al. Nuclear medicine imaging to predict response to radiotherapy: a review. Int. J. Radiat. Oncol. Biol. Phys, 2003; 55: 5-15. | |
| |
11. Ross B., Chenvert T., Kim B., Ben-Yoseph O. Magntic resonanse imaging and spectroscopy: application to experimental neurooncology. Quart. Magn. Resn. Biol. Med, 1994; 1: 89-106. | |
| |
12. Thoeny H.C., De Keyzer F. Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur. Radiol, 2007; 17: 1385-1393. | |
| |
13. Geschwind J.F., Artemov D., Abraham S. et al. Chemoembolization of liver tumor in a rabbit model: assessment of tumor cell death with diffusion-weighted MR imaging and histologic analysis. J. Vasc. Interv. Radiol, 2000;11: 1245-1255. | |
| |
14. Stegman L.D., Rehemtulla A., Hamstra D.A. et al. Diffusion MRI detects early events in the response of a glioma model to the yeast cytosine deaminase gene therapy strategy. Gene. Ther, 2000; 7: 1005-1010. | |
| |
15. Chenevert T.L., Stegman L.D., Taylor J.M. et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J. Natl. Cancer Inst, 2000; 92: 2029-2036. | |
| |
16. DeVries A.F., Kremser C., Hein P.A. et al. Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. Int. J. Radiat. Oncol. Biol. Phys, 2003; 56: 958-965. | |
| |
17. Dzik-Jurasz A., Domenig C., George M. et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet, 2002; 360: 307-308. | |
| |
18. Galons J.P., Altbach M.I., Paine-Murrieta G.D. et al. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia, 1999; 1: 113-117. | |
| |
19. Thoeny H.C., De Keyzer F., Chen F. et al. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology, 2005; 234: 756-764. | |
| |
20. Chenevert T.L., McKeever P.E., Ross B.D. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin. Cancer Res, 1997; 3: 1457-1466. | |
| |
21. Chinnaiyan A.M., Prasad U., Shankar S. et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl. Acad. Sci. U S A, 2000; 97: 1754-1759. | |
| |
22. Hakumaki J.M., Poptani H., Puumalainen A.M. et al. Quantitative 1H nuclear magnetic resonance diffusion spectroscopy of BT4C rat glioma during thymidine kinase-mediated gene therapy in vivo: identification of apoptotic response. Cancer Res, 1998; 58: 3791-3799. | |
| |
23. Poptani H., Puumalainen A.M., Grohn O.H. et al. Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer Gene. Ther, 1998; 5: 101-109. | |
| |
24. Zhao M., Pipe J.G., Bonnett J., Evelhoch J.L. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo. Br. J. Cancer, 1996; 73:61-64. | |
| |
25. Hein P.A., Kremser C., Judmaier W. et al. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur. J. Radiol, 2003; 45: 214-222. | |
| |
26. Kremser C., Judmaier W., Hein P. et al. Preliminary results on the influence of chemoradiation on apparent diffusion coefficients of primary rectal carcinoma measured by magnetic resonance imaging. Strahlenther Onkol, 2003; 179: 641-649. | |
| |
27. Mardor Y., Pfeffer R., Spiegelmann R. et al. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J. Clin. Oncol, 2003; 21:1094-1100. | |
| |
28. Ross B.D., Moffat B.A., Lawrence T.S. et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol. Cancer Ther, 2003; 2: 581-587. | |
| |
29. Koh D.M., Collins D.J. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am. J. Roentgenol, 2007; 188: 1622-1635. | |
| |
30. Sykova E., Svoboda J., Polak J., Chvatal A. Extracellular volume fraction and diffusion characteristics during progressive ischemia and terminal anoxia in the spinal cord of the rat. J. Cereb. Blood. Flow. Metab, 1994; 14: 301-311. | |
| |
31. Sugahara T., Korogi Y., Kochi M. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging, 1999; 9: 53-60. | |
| |
32. Lyng H., Haraldseth O., Rofstad E.K. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn. Reson. Med, 2000; 43: 828-836. | |
| |
33. Guo A.C., Cummings T.J., Dash R.C., Provenzale J.M. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology, 2002; 224: 177-183. | |
| |
34. Szafer A., Zhong J., Gore J.C. Theoretical model for water diffusion in tissues. Magn. Reson. Med, 1995; 33: 697-712. | |
| |
35. Moffat B.A., Chenevert T.L., Lawrence T.S. et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl. Acad. Sci. U S A, 2005; 102: 5524-5529. | |
| |
36. Babsky A.M., Topper S., Zhang H. et al. Evaluation of extra- and intracellular apparent diffusion coefficient of sodium in rat skeletal muscle: effects of prolonged ischemia. Magn. Reson. Med, 2008; 59: 485-491. | |
| |
37. Duong T.Q., Ackerman J.J., Ying H.S., Neil J.J. Evaluation of extra- and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR. Magn. Reson. Med, 1998; 40: 1-13. | |
| |
38. Schepkin V., Chenevert T., Kuszpit K. et al. Sodium and proton diffusion MRI as biomarkers for early therapeutic response in subcutaneous tumors. Magn. Reson. Imaging, 2006; 24: 273-278. | |
| |
39. Schepkin V.D., Lee K.C., Kuszpit K. et al. Proton and sodium MRI assessment of emerging tumor chemotherapeutic resistance. NMR Biomed, 2006; 19: 1035-1042. | |
| |
40. Babsky A., Hekmatyar S., Zhang H. et al. Application of 23Na MRI to monitor chemotherapeutic response in RIF-1 tumors. Neoplasia, 2005; 7: 658-666. | |
| |
41. Babsky A., Hekmatyar S., Zhang H. et al. Predicting and monitoring response to chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea in subcutaneously implanted 9L glioma using the apparent diffusion coefficient of water and 23Na MRI. J. Magn. Reson. Imaging, 2006; 24: 132-139. | |
| |
42. Babsky A.M., Zhang H., Hekmatyar S.K. et al. Monitoring chemotherapeutic response in RIF-1 tumors by single-quantum and triple-quantum-filtered 23Na MRI, 1H diffusion-weighted MRI and PET imaging. Magn. Reson. Imaging, 2007; 25: 1015-1023. | |
| |
43. Thoeny H.C., De Keyzer F., Chen F. et al. Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of the effects of combretastatin a-4 phosphate after repeated administration. Neoplasia, 2005; 7: 779-787. | |
| |
44. Lemaire L., Howe F.A., Rodrigues L.M., Griffiths J.R. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. MAGMA, 1999; 8: 20-26. | |
| |
45. Zhao M., Pipe J.G., Bonnett J., Evelhoch J.L. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo. Br. J. Cancer, 1996; 73: 61-64. | |
| |
46. Seierstad T., Folkvord S., Roe K. et al. Early changes in apparent diffusion coefficient predict the quantitative antitumoral activity of capecitabine, oxaliplatin, and irradiation in HT29 xenografts in athymic nude mice. Neoplasia, 2007; 9: 392-400. | |
| |
47. Galons J.P., Altbach M.I., Paine-Murrieta G.D. et al. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia, 1999; 1: 113-117. | |
| |
48. Morse D.L., Galons J.P., Payne C.M. et al. MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR Biomed, 2007; 20: 602-614. | |
| |
49. Thoeny H.C., De Keyzer F., Vandecaveye V. et al. Effect of vascular targeting agent in rat tumor model: dynamic contrast-enhanced versus diffusion-weighted MR imaging. Radiology, 2005; 237: 492-499. | |
| |
50. Seierstad T., Roe K., Olsen D.R. Noninvasive monitoring of radiation-induced treatment response using proton magnetic resonance spectroscopy and diffusion-weighted magnetic resonance imaging in a colorectal tumor model. Radiother Oncol, 2007; 85: 187-194. | |
| |
51. Roth Y., Tichler T., Kostenich G. et al. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology, 2004; 232: 685-692. | |
| |
52. Schepkin V.D., Ross B.D., Chenevert T.L. et al. Sodium magnetic resonance imaging of chemotherapeutic response in a rat glioma. Magn. Reson. Med, 2005; 53: 85-92. | |
| |
53. Jordan B.F., Runquist M., Raghunand N. et al. Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of HIF-1alpha using PX-478. Neoplasia, 2005; 7: 475-4854. | |
| |
54 Le Bihan D., Delannoy J., Levin R.L. Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology, 1989; 171: 853-857. | |
| |
55. Morvan D., Leroy-Willig A. Simultaneous measurements of diffusion and transverse relaxation in exercising skeletal muscle. Magn. Reson. Imaging, 1995; 13: 943-948. | |
| |
56. Braunschweiger P.G. Effect of cyclophosphamide on the pathophysiology of RIF-1 solid tumors. Cancer Res, 1988; 48: 4206-4210. | |
| |
57. Padhani A., Liu G., Koh D.M. et al. Diffusion weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia, 2009; 11: 102-125. | |
| |
58. Boucher E., Corbinais S., Brissot P. et al. Treatment of hepatocellular carcinoma (HCC) with systemic chemotherapy combining epirubicin, cisplatinum and infusional 5-fluorouracil (ECF regimen). Cancer Chemother. Pharmacol, 2002; 50: 305-308. | |
| |
59. Iwamiya T., Sawada S., Ohta Y. Repeated arterial infusion chemotherapy for inoperable hepatocellular carcinoma using an implantable drug delivery system. Cancer Chemother. Pharmacol, 1994; 33 Suppl: S134-138. | |
| |
60. Yanase K., Yoshiji H., Ikenaka Y. et al. Synergistic inhibition of hepatocellular carcinoma growth and hepatocarcinogenesis by combination of 5-fluorouracil and angiotensin-converting enzyme inhibitor via anti-angiogenic activities. Oncol. Rep, 2007; 17: 441-446. | |
| |
61. Helmer K.G., Meiler M.R., Sotak C.H., Petruccelli J.D. Comparison of the return-to-the-origin probability and the apparent diffusion coefficient of water as indicators of necrosis in RIF-1 tumors. Magn. Reson. Med, 2003; 49: 468-478. | |
| |
62. Chenevert T.L., Stegman L.D., Taylor J.M. et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J. Natl. Cancer Inst, 2000; 92: 2029-2036. | |
| |
63. Tozer G.M., Kanthou C., Parkins C.S., Hill S.A. The biology of the combretastatins as tumour vascular targeting agents. Int. J. Exp. Pathol, 2002; 83: 21-38. | |
| |
64. Welsh S., Williams R., Kirkpatrick L. et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther, 2004; 3: 233-244 | |
| |
65. Chinnaiyan A.M., Prasad U., Shankar S. et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl. Acad. Sci. U S A, 2000; 97: 1754-1759. | |
| |
66. Lyseng-Williamson K.A., Fenton C. Docetaxel: a review of its use in metastatic breast cancer. Drugs, 2005; 65: 2513-2531. | |
| |
67. Chenevert T., McKeever P., Ross B. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin. Cancer. Res, 1997; 3: 1457-1466. | |
| |
68. Ross B., Chenevert T., Rehemtulla A. Magnetic resonance imaging in cancer research. Eur. J. Cancer, 2002; 38: 2147-2156. | |
| |
69. Ross B., Moffat B., Lawrence T. et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol. Cancer Ther, 2003; 2: 581-587. | |
| |
70. Ross B.D., Zhao Y.J., Neal E.R. et al. Contributions of cell kill and posttreatment tumor growth rates to the repopulation of intracerebral 9L tumors after chemotherapy: an MRI study. Proc. Natl. Acad. Sci. U S A, 1998; 95: 7012-7017. | |
| |
71. Winter P.M., Poptani H., Bansal N. Effects of chemotherapy by 1,3-bis(2-chloroethyl)-1-nitrosourea on single-quantum- and triple-quantum-filtered 23Na and 31P nuclear magnetic resonance of the subcutaneously implanted 9L glioma. Cancer Res, 2001; 61: 2002-2007. | |
| |
72. Steen R.G., Tamargo R.J., McGovern K.A. et al. In vivo 31P nuclear magnetic resonance spectroscopy of subcutaneous 9L gliosarcoma: effects of tumor growth and treatment with 1,3-bis(2-chloroethyl)-1-nitrosourea on tumor bioenergetics and histology. Cancer Res, 1988; 48: 676-681. | |
| |
73. Steen R.G. Response of solid tumors to chemotherapy monitored by in vivo 31P nuclear magnetic resonance spectroscopy: a review. Cancer Res, 1989; 49: 4075-4085. | |
| |
74. Ameer G.A., Crumpler E.T., Langer R. Cell-killing potential of a water-soluble radical initiator. Int. J. Cancer, 2001; 93: 875-879. | |
| |
75. Dzik-Jurasz A., Domenig C., George M. et al. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet, 2002; 360: 307-308. | |
| |
76. Mardor Y., Roth Y., Lidar Z. et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res, 2001; 61: 4971-4973. | |
| |
77. Yuan Y.H., Xiao E.H., Liu J.B. et al. Characteristics and pathological mechanism on magnetic resonance diffusion-weighted imaging after chemoembolization in rabbit liver VX-2 tumor model. World J. Gastroenterol, 2007; 13: 5699-5706. | |
| |
78. Yuan Y.H., Xiao E.H., Liu J.B. et al. Gene expression and MR diffusion-weighted imaging after chemoembolization in rabbit liver VX-2 tumor model. World J. Gastroenterol, 2008; 14: 5557-5563. | |
| |
79. Momparler R.L., Karon M., Siegel S.E., Avila F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res, 1976; 36: 2891-2895. | |
| |
80. Kim H., Morgan D.E., Buchsbaum D.J. et al. Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res, 2008; 68: 8369-8376. | |
| |
81. Jennings D., Hatton B.N., Guo J. et al. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia, 2002; 4: 255-262. | |
| |
82. Vogel-Claussen J., Gimi B., Artemov D., Bhujwalla Z.M. Diffusion-weighted and macromolecular contrast enhanced MRI of tumor response to antivascular therapy with ZD6126. Cancer Biol. Ther, 2007; 6: 1469-1475. | |
| |
83. Micheletti G., Poli M., Borsotti P. et al. Vascular-targeting activity of ZD6126, a novel tubulin-binding agent. Cancer Res, 2003; 63: 1534-1537. | |
| |
84. Dev S.B., Caban J.B., Nanda G.S. et al. Magnetic resonance studies of laryngeal tumors implanted in nude mice: effect of treatment with bleomycin and electroporation. Magn. Reson. Imaging, 2002; 20: 389-394. | |
| |
85. Kamm Y.J., Heerschap A., Rosenbusch G. et al. 5-Fluorouracil metabolite patterns in viable and necrotic tumor areas of murine colon carcinoma determined by 19F NMR spectroscopy. Magn. Reson. Med, 1996; 36: 445-450. | |
| |
86. Koh D.M., Scurr E., Collins D. et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am. J. Roentgenol, 2007; 188: 1001-1008. | |
| |
87. Poptani H., Bansal N,. Graham R.A. et al. Detecting early response to cyclophosphamide treatment of RIF-1 tumors using selective multiple quantum spectroscopy (SelMQC) and dynamic contrast enhanced imaging. NMR Biomed, 2003; 16: 102-111. |
Refbacks
- There are currently no refbacks.
Copyright (c) 2009 Studia biologica
This work is licensed under a Creative Commons Attribution 4.0 International License.