THE IMPACT OF GRAPE POMACE EXTRACT RICH IN NATURAL COMPLEX OF POLYPHENOLS ON MORPHO-FUNCTIONAL STATE OF LEUKOCYTES UNDER EXPERIMENTAL DIABETES MELLITUS
DOI: http://dx.doi.org/10.30970/sbi.1802.771
Abstract
Background. Diabetes mellitus is one of the most common diseases in the world. Under this pathology all organs and systems of an organism are damaged, including the immune system. Peripheral blood leukocytes are an important element of this system that suffer damage under diabetes mellitus due to the influence of reactive oxygen species and reactive nitrogen species, the number of which increases fast and leads to the development of oxidative-nitrative stress. Thus, the discovery of new diabetes-correcting drugs that possess hypoglycemic, antioxidant and immunomodulatory properties is one of the principal tasks. Such properties are inherent in polyphenolic compounds, a large amount of which is contained in the grape pomace. That is why the study of grape pomace extract, rich in a natural complex of polyphenols, is important to evaluate the possibility of further use of these substances as a basis for drugs that can be used in the complex therapy of diabetes mellitus.
Materials and Methods. The research used peripheral blood leukocytes of the control rats, the control animals that were treated with grape pomace extract for 14 days, animals with streptozotocin-induced diabetes mellitus and rats with experimental diabetes mellitus that were treated with grape pomace extract for 14 days. To evaluate the corrective effect of the grape pomace extract rich in a natural complex of polyphenols on the state of the antioxidant defense and the L-arginine/NO systems, the activity of antioxidant enzymes, the level of oxidative modification products of proteins and lipids, the activity of NO-synthase, the content of nitrites and nitrates, 3ʹ-nitrotyrosine-modified proteins were studied. The total number of leukocytes, the white blood cell differential and the phagocytic activity, and the average cytochemical coefficients of cationic proteins and NADPH-oxidase activity were indicated to study the effect of the grape pomace extract on the functional state of leukocytes.
Results and Discussion. The study revealed normalization of the total number of leukocytes and the white blood cell differential, the activity of NADPH-oxidase, superoxide dismutase, catalase and glutathione peroxidase, and the levels of the oxidative modification products of proteins and lipids, nitrites, nitrates and 3ʹ-nitrotyrosine-modified proteins, as well as an increase in the average cytochemical coefficient of cationic proteins, and a decrease of the inducible NO-synthase activity after grape pomace extract administration for 14 days to animals with streptozotocin-induced diabetes mellitus.
Conclusion. The obtained results confirm the antioxidant and immunomodulatory effects of the studied extract and justify the feasibility of using grape pomace complex of polyphenolic compounds as a basis for new drugs that will be used in the complex therapy of diabetes mellitus.
Keywords
Full Text:
PDFReferences
Altobelli, G. G., Van Noorden, S., Balato, A., & Cimini, V. (2020). Copper/zinc superoxide dismutase in human skin: current knowledge. Frontiers in Medicine, 7, 183. doi:10.3389/fmed.2020.00183 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Bahadoran, Z., Mirmiran, P., & Azizi, F. (2013). Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. Journal of Diabetes & Metabolic Disorders, 12(1), 43. doi:10.1186/2251-6581-12-43 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Baisya, R., Katkam, S. K., KS, S., Devarasetti, P. K., Kutala, V. K., & Rajasekhar, L. (2023). Evaluation of NADPH oxidase (NOX) activity by nitro blue tetrazolium (NBT) test in SLE patients. Mediterranean Journal of Rheumatology, 34(2), 163-171. doi:10.31138/mjr.34.2.163 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Boydens, C., Pauwels, B., Vanden Daele, L., & Van de Voorde, J. (2016). Protective effect of resveratrol and quercetin on in vitro-induced diabetic mouse corpus cavernosum. Cardiovascular Diabetology, 15(1), 46. doi:10.1186/s12933-016-0366-9 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Chala, D., Sabadashka, M., Morozovych, A., Krychowiak-Maśnicka, M., Królicka, A., & Sybirna, N. (2024). Immunomodulatory and antibacterial effect of red wine concentrate rich in a natural complex of polyphenols under diabetes mellitus. Biomedicine & Pharmacotherapy, 170, 116023. doi:10.1016/j.biopha.2023.116023 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Checa, J., & Aran, J. M. (2020). Reactive oxygen species: drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057-1073. doi:10.2147/jir.s275595 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
de Souza Ferreira, C., Araújo, T. H., Ângelo, M. L., Pennacchi, P. C., Okada, S. S., de Araújo Paula, F. B., Migliorini, S., & Rodrigues, M. R. (2012). Neutrophil dysfunction induced by hyperglycemia: modulation of myeloperoxidase activity. Cell Biochemistry and Function, 30(7), 604-610. doi:10.1002/cbf.2840 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Diabetes. (n.d.). WHO. Retrieved January 29, 2024, from https://www.who.int/health-topics/diabetes | ||||
| ||||
Elejalde, E., Villarán, M. C., & Alonso, R. M. (2021). Grape polyphenols supplementation for exercise-induced oxidative stress. Journal of the International Society of Sports Nutrition, 18(1), 3. doi:10.1186/s12970-020-00395-0 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Fountas, A., Diamantopoulos, L.-N., & Tsatsoulis, A. (2015). Tyrosine kinase inhibitors and diabetes: a novel treatment paradigm? Trends in Endocrinology & Metabolism, 26(11), 643-656. doi:10.1016/j.tem.2015.09.003 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Froy, O., Hananel, A., Chapnik, N., & Madar, Z. (2007). Differential effect of insulin treatment on decreased levels of beta-defensins and Toll-like receptors in diabetic rats. Molecular Immunology, 44(5), 796-802. doi:10.1016/j.molimm.2006.04.009 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ganesh, R., & Meenakshi, B. (2023). Serum zinc and copper levels in children with type 1 diabetes mellitus. Indian Journal of Pediatrics, 90(10), 1052-1052. doi:10.1007/s12098-023-04725-3 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Giri, B., Dey, S., Das, T., Sarkar, M., Banerjee, J., & Dash, S. K. (2018). Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomedicine & Pharmacotherapy, 107, 306-328. doi:10.1016/j.biopha.2018.07.157 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Hertsyk, D. Yu., Sabadashka, M. V., Kaprelyants, L. V., & Sybirna, N. O. (2021). Corrective effect of red wine concentrate enriched with natural complex of polyphenols on activity of antioxidant defense enzymes in cardiac muscle under experimental diabetes mellitus. Studia Biologica, 15(1), 37-48. doi:10.30970/sbi.1501.644 Crossref ● Google Scholar | ||||
| ||||
Hink, H. U., Santanam, N., Dikalov, S., McCann, L., Nguyen, A. D., Parthasarathy, S., Harrison, D. G., & Fukai, T. (2002). Peroxidase properties of extracellular superoxide dismutase: role of uric acid in modulating in vivo activity. Arteriosclerosis, thrombosis, and vascular biology, 22(9), 1402-1408. doi:10.1161/01.atv.0000027524.86752.02 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Insuela, D., Coutinho, D., Martins, M., Ferrero, M., Carvalho, V., Insuela, D., Coutinho, D., Martins, M., Ferrero, M., & Carvalho, V. (2019). Neutrophil function impairment is a host susceptibility factor to bacterial infection in diabetes. In: O. Fuchs & S. Shamsadin Athari (Eds.), Cells of the immune system (pp. 1-22). IntechOpen. doi:10.5772/intechopen.86600 Crossref ● Google Scholar | ||||
| ||||
Kanikarla-Marie, P., Micinski, D., & Jain, S. K. (2019). Hyperglycemia (high-glucose) decreases L-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Molecular and Cellular Biochemistry, 459(1), 151-156. doi:10.1007/s11010-019-03558-z Crossref ● PubMed ● Google Scholar | ||||
| ||||
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Magrone, T., Candore, G., Caruso, C., Jirillo, E., & Covelli, V. (2008). Polyphenols from red wine modulate immune responsiveness: biological and clinical significance. Current Pharmaceutical Design, 14(26), 2733-2748. doi:10.2174/138161208786264098 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Moradi, S., Jafarian-Kerman, S. R., Salari, & Rohani. (2012). Association between diabetes complications and leukocyte counts in Iranian patients. Journal of Inflammation Research, 5, 7-11. doi:10.2147/jir.s26917 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Pettersson, U. S., Christoffersson, G., Massena, S., Ahl, D., Jansson, L., Henriksnäs, J., & Phillipson, M. (2011). Increased recruitment but impaired function of leukocytes during inflammation in mouse models of type 1 and type 2 diabetes. PloS One, 6(7), e22480. doi:10.1371/journal.pone.0022480 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Promyos, N., Phienluphon, P. P., Wechjakwen, N., Lainampetch, J., Prangthip, P., & Kwanbunjan, K. (2023). Inverse correlation of superoxide dismutase and catalase with type 2 diabetes among rural thais. Nutrients, 15(9), 2071. doi:10.3390/nu15092071 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sabadashka, M., Hertsyk, D., Strugała-Danak, P., Dudek, A., Kanyuka, O., Kucharska, A. Z., Kaprelyants, L., & Sybirna, N. (2021). Anti-diabetic and antioxidant activities of red wine concentrate enriched with polyphenol compounds under experimental diabetes in rats. Antioxidants, 10(9), 1399. doi:10.3390/antiox10091399 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Serreli, G., & Deiana, M. (2023). Role of dietary polyphenols in the activity and expression of nitric oxide synthases: a review. Antioxidants, 12(1), 147. doi:10.3390/antiox12010147 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Skorobahatko, V., Sabadashka, M., Chala, D., & Sybirna, N. (2023). Diabetes-correcting and antioxidant effects of grape pomace extract rich in natural complex of polyphenols. Studia Biologica, 17(4), 51-62. doi:10.30970/sbi.1704.738 Crossref ● Google Scholar | ||||
| ||||
Spryn, K. R., Sabadashka, M. V., & Sybirna, N. O. (2021). Effects of agmatine and red wine concentrate, enriched with polyphenolic compounds, on L-arginine/nitrogen oxide system in the brain of rats with experimental diabetes mellitus. Studia Biologica, 15(2), 25-34. doi:10.30970/sbi.1502.655 Crossref ● Google Scholar | ||||
| ||||
Taylor-Fishwick, D. A. (2013). NOX, NOX who is there? The contribution of NADPH oxidase one to beta cell dysfunction. Frontiers in Endocrinology, 4, 40. doi:10.3389/fendo.2013.00040 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Vermot, A., Petit-Härtlein, I., Smith, S. M. E., & Fieschi, F. (2021). NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants, 10(6), 890. doi:10.3390/antiox10060890 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Waterhouse, A. L. (2002). Wine phenolics. Annals of the New York Academy of Sciences, 957(1), 21-36. doi:10.1111/j.1749-6632.2002.tb02903.x Crossref ● PubMed ● Google Scholar | ||||
| ||||
Wood dos Santos, T., Cristina Pereira, Q., Teixeira, L., Gambero, A., A. Villena, J., & Lima Ribeiro, M. (2018). Effects of polyphenols on thermogenesis and mitochondrial biogenesis. International Journal of Molecular Sciences, 19(9), 2757. doi:10.3390/ijms19092757 Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Dariya Chala, Mariya Sabadashka, Nataliia Sybirna
This work is licensed under a Creative Commons Attribution 4.0 International License.