THE IMPACT OF GRAPE POMACE EXTRACT RICH IN NATURAL COMPLEX OF POLYPHENOLS ON MORPHO-FUNCTIONAL STATE OF LEUKOCYTES UNDER EXPERIMENTAL DIABETES MELLITUS

Dariya Chala, Mariya Sabadashka, Nataliia Sybirna


DOI: http://dx.doi.org/10.30970/sbi.1802.771

Abstract


Background. Diabetes mellitus is one of the most common diseases in the world. Under this pathology all organs and systems of an organism are damaged, inclu­ding the immune system. Peripheral blood leukocytes are an important element of this system that suffer damage under diabetes mellitus due to the influence of reactive oxygen species and reactive nitrogen species, the number of which increases fast and leads to the development of oxidative-nitrative stress. Thus, the discovery of new diabetes-correcting drugs that possess hypoglycemic, antioxidant and immunomodulatory proper­ties is one of the principal tasks. Such properties are inherent in polyphenolic compounds, a large amount of which is contained in the grape pomace. That is why the study of grape pomace extract, rich in a natural complex of polyphenols, is important to evaluate the possibility of further use of these substances as a basis for drugs that can be used in the complex therapy of diabetes mellitus.
Materials and Methods. The research used peripheral blood leukocytes of the control rats, the control animals that were treated with grape pomace extract for 14 days, animals with streptozotocin-induced diabetes mellitus and rats with experimental diabetes mellitus that were treated with grape pomace extract for 14 days. To evaluate the corrective effect of the grape pomace extract rich in a natural complex of polyphenols on the state of the antioxidant defense and the L-arginine/NO systems, the activity of antioxidant enzymes, the level of oxidative modification products of proteins and lipids, the activity of NO-synthase, the content of nitrites and nitrates, 3ʹ-nitrotyrosine-modified proteins were studied. The total number of leukocytes, the white blood cell differential and the phagocytic activity, and the average cytochemical coefficients of cationic proteins and NADPH-oxidase activity were indicated to study the effect of the grape pomace extract on the functional state of leukocytes.
Results and Discussion. The study revealed normalization of the total number of leukocytes and the white blood cell differential, the activity of NADPH-oxidase, superoxide dismutase, catalase and glutathione peroxidase, and the levels of the oxidative modification products of proteins and lipids, nitrites, nitrates and 3ʹ-nitrotyrosine-modified proteins, as well as an increase in the average cytochemical coefficient of cationic proteins, and a decrease of the inducible NO-synthase activity after grape pomace extract administration for 14 days to animals with streptozotocin-induced diabetes mellitus.
Conclusion. The obtained results confirm the antioxidant and immunomodulatory effects of the studied extract and justify the feasibility of using grape pomace complex of polyphenolic compounds as a basis for new drugs that will be used in the complex therapy of diabetes mellitus.


Keywords


grape pomace, diabetes mellitus, leukocytes, oxidative stress, nitrative stress, polyphenols

Full Text:

PDF

References


Altobelli, G. G., Van Noorden, S., Balato, A., & Cimini, V. (2020). Copper/zinc superoxide dismutase in human skin: current knowledge. Frontiers in Medicine, 7, 183. doi:10.3389/fmed.2020.00183
CrossrefPubMedPMCGoogle Scholar

Bahadoran, Z., Mirmiran, P., & Azizi, F. (2013). Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. Journal of Diabetes & Metabolic Disorders, 12(1), 43. doi:10.1186/2251-6581-12-43
CrossrefPubMedPMCGoogle Scholar

Baisya, R., Katkam, S. K., KS, S., Devarasetti, P. K., Kutala, V. K., & Rajasekhar, L. (2023). Evaluation of NADPH oxidase (NOX) activity by nitro blue tetrazolium (NBT) test in SLE patients. Mediterranean Journal of Rheumatology, 34(2), 163-171. doi:10.31138/mjr.34.2.163
CrossrefPubMedPMCGoogle Scholar

Boydens, C., Pauwels, B., Vanden Daele, L., & Van de Voorde, J. (2016). Protective effect of resveratrol and quercetin on in vitro-induced diabetic mouse corpus cavernosum. Cardiovascular Diabetology, 15(1), 46. doi:10.1186/s12933-016-0366-9
CrossrefPubMedPMCGoogle Scholar

Chala, D., Sabadashka, M., Morozovych, A., Krychowiak-Maśnicka, M., Królicka, A., & Sybirna, N. (2024). Immunomodulatory and antibacterial effect of red wine concentrate rich in a natural complex of polyphenols under diabetes mellitus. Biomedicine & Pharmacotherapy, 170, 116023. doi:10.1016/j.biopha.2023.116023
CrossrefPubMedGoogle Scholar

Checa, J., & Aran, J. M. (2020). Reactive oxygen species: drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057-1073. doi:10.2147/jir.s275595
CrossrefPubMedPMCGoogle Scholar

de Souza Ferreira, C., Araújo, T. H., Ângelo, M. L., Pennacchi, P. C., Okada, S. S., de Araújo Paula, F. B., Migliorini, S., & Rodrigues, M. R. (2012). Neutrophil dysfunction induced by hyperglycemia: modulation of myeloperoxidase activity. Cell Biochemistry and Function, 30(7), 604-610. doi:10.1002/cbf.2840
CrossrefPubMedGoogle Scholar

Diabetes. (n.d.). WHO. Retrieved January 29, 2024, from https://www.who.int/health-topics/diabetes

Elejalde, E., Villarán, M. C., & Alonso, R. M. (2021). Grape polyphenols supplementation for exercise-induced oxidative stress. Journal of the International Society of Sports Nutrition, 18(1), 3. doi:10.1186/s12970-020-00395-0
CrossrefPubMedPMCGoogle Scholar

Fountas, A., Diamantopoulos, L.-N., & Tsatsoulis, A. (2015). Tyrosine kinase inhibitors and diabetes: a novel treatment paradigm? Trends in Endocrinology & Metabolism, 26(11), 643-656. doi:10.1016/j.tem.2015.09.003
CrossrefPubMedGoogle Scholar

Froy, O., Hananel, A., Chapnik, N., & Madar, Z. (2007). Differential effect of insulin treatment on decreased levels of beta-defensins and Toll-like receptors in diabetic rats. Molecular Immunology, 44(5), 796-802. doi:10.1016/j.molimm.2006.04.009
CrossrefPubMedGoogle Scholar

Ganesh, R., & Meenakshi, B. (2023). Serum zinc and copper levels in children with type 1 diabetes mellitus. Indian Journal of Pediatrics, 90(10), 1052-1052. doi:10.1007/s12098-023-04725-3
CrossrefPubMedGoogle Scholar

Giri, B., Dey, S., Das, T., Sarkar, M., Banerjee, J., & Dash, S. K. (2018). Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomedicine & Pharmacotherapy, 107, 306-328. doi:10.1016/j.biopha.2018.07.157
CrossrefPubMedGoogle Scholar

Hertsyk, D. Yu., Sabadashka, M. V., Kaprelyants, L. V., & Sybirna, N. O. (2021). Corrective effect of red wine concentrate enriched with natural complex of polyphenols on activity of antioxidant defense enzymes in cardiac muscle under experimental diabetes mellitus. Studia Biologica, 15(1), 37-48. doi:10.30970/sbi.1501.644
CrossrefGoogle Scholar

Hink, H. U., Santanam, N., Dikalov, S., McCann, L., Nguyen, A. D., Parthasarathy, S., Harrison, D. G., & Fukai, T. (2002). Peroxidase properties of extracellular superoxide dismutase: role of uric acid in modulating in vivo activity. Arteriosclerosis, thrombosis, and vascular biology, 22(9), 1402-1408. doi:10.1161/01.atv.0000027524.86752.02
CrossrefPubMedGoogle Scholar

Insuela, D., Coutinho, D., Martins, M., Ferrero, M., Carvalho, V., Insuela, D., Coutinho, D., Martins, M., Ferrero, M., & Carvalho, V. (2019). Neutrophil function impairment is a host susceptibility factor to bacterial infection in diabetes. In: O. Fuchs & S. Shamsadin Athari (Eds.), Cells of the immune system (pp. 1-22). IntechOpen. doi:10.5772/intechopen.86600
CrossrefGoogle Scholar

Kanikarla-Marie, P., Micinski, D., & Jain, S. K. (2019). Hyperglycemia (high-glucose) decreases L-cysteine and glutathione levels in cultured monocytes and blood of Zucker diabetic rats. Molecular and Cellular Biochemistry, 459(1), 151-156. doi:10.1007/s11010-019-03558-z
CrossrefPubMedGoogle Scholar

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. doi:10.1016/S0021-9258(19)52451-6
CrossrefPubMedGoogle Scholar

Magrone, T., Candore, G., Caruso, C., Jirillo, E., & Covelli, V. (2008). Polyphenols from red wine modulate immune responsiveness: biological and clinical significance. Current Pharmaceutical Design, 14(26), 2733-2748. doi:10.2174/138161208786264098
CrossrefPubMedGoogle Scholar

Moradi, S., Jafarian-Kerman, S. R., Salari, & Rohani. (2012). Association between diabetes complications and leukocyte counts in Iranian patients. Journal of Inflammation Research, 5, 7-11. doi:10.2147/jir.s26917
CrossrefPubMedPMCGoogle Scholar

Pettersson, U. S., Christoffersson, G., Massena, S., Ahl, D., Jansson, L., Henriksnäs, J., & Phillipson, M. (2011). Increased recruitment but impaired function of leukocytes during inflammation in mouse models of type 1 and type 2 diabetes. PloS One, 6(7), e22480. doi:10.1371/journal.pone.0022480
CrossrefPubMedPMCGoogle Scholar

Promyos, N., Phienluphon, P. P., Wechjakwen, N., Lainampetch, J., Prangthip, P., & Kwanbunjan, K. (2023). Inverse correlation of superoxide dismutase and catalase with type 2 diabetes among rural thais. Nutrients, 15(9), 2071. doi:10.3390/nu15092071
CrossrefPubMedPMCGoogle Scholar

Sabadashka, M., Hertsyk, D., Strugała-Danak, P., Dudek, A., Kanyuka, O., Kucharska, A. Z., Kaprelyants, L., & Sybirna, N. (2021). Anti-diabetic and antioxidant activities of red wine concentrate enriched with polyphenol compounds under experimental diabetes in rats. Antioxidants, 10(9), 1399. doi:10.3390/antiox10091399
CrossrefPubMedPMCGoogle Scholar

Serreli, G., & Deiana, M. (2023). Role of dietary polyphenols in the activity and expression of nitric oxide synthases: a review. Antioxidants, 12(1), 147. doi:10.3390/antiox12010147
CrossrefPubMedPMCGoogle Scholar

Skorobahatko, V., Sabadashka, M., Chala, D., & Sybirna, N. (2023). Diabetes-correcting and antioxidant effects of grape pomace extract rich in natural complex of polyphenols. Studia Biologica, 17(4), 51-62. doi:10.30970/sbi.1704.738
CrossrefGoogle Scholar

Spryn, K. R., Sabadashka, M. V., & Sybirna, N. O. (2021). Effects of agmatine and red wine concentrate, enriched with polyphenolic compounds, on L-arginine/nitrogen oxide system in the brain of rats with experimental diabetes mellitus. Studia Biologica, 15(2), 25-34. doi:10.30970/sbi.1502.655
CrossrefGoogle Scholar

Taylor-Fishwick, D. A. (2013). NOX, NOX who is there? The contribution of NADPH oxidase one to beta cell dysfunction. Frontiers in Endocrinology, 4, 40. doi:10.3389/fendo.2013.00040
CrossrefPubMedPMCGoogle Scholar

Vermot, A., Petit-Härtlein, I., Smith, S. M. E., & Fieschi, F. (2021). NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants, 10(6), 890. doi:10.3390/antiox10060890
CrossrefPubMedPMCGoogle Scholar

Waterhouse, A. L. (2002). Wine phenolics. Annals of the New York Academy of Sciences, 957(1), 21-36. doi:10.1111/j.1749-6632.2002.tb02903.x
CrossrefPubMedGoogle Scholar

Wood dos Santos, T., Cristina Pereira, Q., Teixeira, L., Gambero, A., A. Villena, J., & Lima Ribeiro, M. (2018). Effects of polyphenols on thermogenesis and mitochondrial biogenesis. International Journal of Molecular Sciences, 19(9), 2757. doi:10.3390/ijms19092757
CrossrefPubMedPMCGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Dariya Chala, Mariya Sabadashka, Nataliia Sybirna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.