THE GLICOGEN ACCUMULATION IN CELLS OF CHLOROBIUM LIMICOLA UNDER THE CONDITION OF THE DISRUPTION OF SOME STEPS OF THE ARNON’ CYCLE

O. Levytska, S. Gudz


DOI: http://dx.doi.org/10.30970/sbi.0403.114

Abstract


Nitrates are not utilized by photosynthetic green sulfur bacteria Chlorobium limicola as the nitrogen source. Addition of these compounds into the medium inhibits the growth of bacteria but stimulates the glycogen accumulation. Nitrates are rapidly converted by the cells of C. limicola to the nitrites. Maximal nitrate reductase activity in the cells of C. limicola was detected after one day cultivation. Nitrates and nitrites inhibit activity of fumarase – the key enzyme of the reductive tricarboxylic acid cycle. Nitrites have more potential action as compared to the nitrate. The glycogen content in the cells of C. limicola cultivated in the medium with nitrates, but not acetate and pyruvate, show no significant change. Addition of acetate and pyruvate to the medium stimulate the glycogen synthesis in the presence of nitrate. Iodine acetate decreases the glycogen level under these conditions.


Keywords


Chlorobium limicola, glycogen, Arnon’ cycle, nitrates

References


1. Гончар М.В. Чутливий метод кількісного визначення пероксиду водню та субстратів оксидаз у біологічних об'єктах. Укр. біохім. журн, 1998; 70(5): 157-163.

2. Горішний М., Гудзь С., Гнатуш С. Метаболізм глюкози та глікогену у клітинах зелених фотосинтезувальних сіркобактерій Chlorobium limicola. Вісн. Львів.ун-ту, Сер. біол, 2008; 46: 129-136.

3. Горішний М.Б. Екологічне значення зелених сіркових бактерій в утилізації сірководню: автореф. дис. на здобуття ступеня канд. біол. наук: спец. 03.00.16. (екологія). Київ, 2008. С.18.

4. Лакин Г. Ф. Биометрия. Москва: Высш. шк., 1990. 352 с.

5. Левицька О.В., Гудзь С.П. Взаємозв'язок азотного живлення та утворення глікогену в клітинах Chlorobium limicola. Мікробіологія та біотехнологія, 2010; 1: 53-61.
https://doi.org/10.18524/2307-4663.2010.1(9).98515

6. Ballicora M.A., Iglesias A.A., Preiss J. ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol. Мol. Вiol. Rev, 2003; 67(2): 213-225.
https://doi.org/10.1128/MMBR.67.2.213-225.2003
PMid:12794190 PMCid:PMC156471

7. Baneras L., Garcia-Gil L.J. Environmental and physiological factors affecting the uptake of phosphate by Chlorobium limicola. Arch. Мicrobiol, 1998; 170: 252-258.
https://doi.org/10.1007/s002030050640

8. Cabello P., Rolda'n M. D., Moreno-Vivia'n C. Nitrate reduction and the nitrogen cycle in archaea. Microbiol, 2004; 150: 3527-3546.
https://doi.org/10.1099/mic.0.27303-0
PMid:15528644

9. Castellani A.G., Niven Jr. Factors affecting the bacteriostatic action of sodium nitrite. Appl. Environ. Microbiol, 1955; 3: 154-159.

10. Cork D., Garunas R., Sajjad A. Chlorobium limicola forma thoisulfatophilum: biocatalyst in the production of sulfur and organic carbon from a gas stream containing H2S and CO2. Appl. Environ. Microbiol, 1983; 45: 913-918.

11. Crocetti G. R., Banfield J. F., Keller J. et al. Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiol, 2002; 148: 3353-3364.
https://doi.org/10.1099/00221287-148-11-3353
PMid:12427927

12. Dietzler D., Leckie M., Lais C. Periodic inventory review as a strategy for survival in Escherichia coli. J. Biol. Chem, 1979; 254: 8288-8294.

13. Eisen J.A., Nelson K.E. et al. The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc. Natl. Acad. Sci. USA, 2002; 99(14): 9509-9514.
https://doi.org/10.1073/pnas.132181499
PMid:12093901 PMCid:PMC123171

14. Evans M.C., Buchanan B.B., Arnon D.I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA, 1966; 55: 928-934.
https://doi.org/10.1073/pnas.55.4.928
PMid:5219700 PMCid:PMC224252

15. Frigaard N., Chew A., Li H. et al. Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynthesis Research, 2003; 78: 93-117.
https://doi.org/10.1023/B:PRES.0000004310.96189.b4
PMid:16245042

16. Granger D., Taintor R., Boockvar K.,Hibbs J. Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol, 1996; 268: 142-151.
https://doi.org/10.1016/S0076-6879(96)68016-1

17. Hara F., Akazawa T., Kojima K. Glycogen biosynthesis in Chromatium strain D: I. Characterization of glycogen. Plant and Cell Physiology, 1973; 14(4): 737-745.

18. Leleu O., Vuylsteker C. Unusual regulatory nitrate reductase activity in cotyledons of Brassica napus seedlings: enhancement of nitrate reductase activity by ammonium supply. J. Exp. Bot, 2004; 55(398): 815-823.
https://doi.org/10.1093/jxb/erh088
PMid:14990621

19. Lowry O., Rosebrough N., Farr L., Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem, 1951; 193: 265-275.

20. Lugue-Romeo M.M., Castillo F. Inhibition of aconitase and fumarase by nitrogen compounds in Rhodobacter capsulatus. Arch. Microbiol, 1991; 155: 149-152.
https://doi.org/10.1007/BF00248609

21. Mas J. Storage products in purple and green sulfur bacteria. Eds. Blankenship R.E., Madigan M.T., Bauer C.E. Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, 1995; 973-990.
https://doi.org/10.1007/0-306-47954-0_45

22. O'leary V., Solberg M. Effect of sodium nitrite inhibition on intracellular thiol groups and the activity of certain glycolytic enzymes in Clostridium perfringens. Appl. Environ. Microbiol, 1976; 31(2): 208-212

23. Overmann J. Green sulfur bacteria. Bergey's Manual of Systematics Bacteriology, 2nd edn., еds. Boone D.R., Castenholz R.W., Garrity G.M. New York, Berlin, Heidelberg: Springer, 2001; 1: 601-605.

24. Philippis R., Sili C., Vincenzini M. Glycogen and poly-β-hydroxybutyrate synthesis in Spirulina maxima. J. Gen Microbiol, 1992; 138: 1623-1628.
https://doi.org/10.1099/00221287-138-8-1623

25. Puchegger S., Redl B., Stoffler G. Purification and properties of a thermostable fumarate hydratase from the archaeobacterium Sulfolobus solfataricus. J. Gen. Microbiol, 1990; 136: 1537-1541.
https://doi.org/10.1099/00221287-136-8-1537
PMid:2124611

26. Seibold G., Dempf S., Schreiner J., Eikmanns B. Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiol, 2007; 153: 1275-1285.
https://doi.org/10.1099/mic.0.2006/003368-0
PMid:17379737

27. Sirevag R., Ormerod J.G. Carbon dioxide fixation in green sulphur bacteria. Biochem. J, 1970; 120: 399-408.
https://doi.org/10.1042/bj1200399
PMid:5493862 PMCid:PMC1179611

28. Steiner K. E., Preiss J. Biosynthesis of Bacterial Glycogen: Genetic and Allosteric Regulation of Glycogen Biosynthesis in Salmonella typhimurium LT-2. J. Bact, 1977; 129(1): 246-253.

29. Wimpennya J.W.T., Warmsleya A.M.H. The effect of nitrate on krebs cycle enzymes in various bacteria. Biochim. Biophys. Acta, 1967; 156(2): 297-303.
https://doi.org/10.1016/0304-4165(68)90258-4

30. Yarbrough J.M., Rake J.B., Eagon R.G. Bacterial inhibitory effects of nitrite: inhibiton of active transport, but not of group translocation, and of intracellular enzymes. Appl. Environ. Microbiol, 1980; 39(4): 831-834.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.