STUDY OF ANTIBACTERIAL EFFECTS OF TRANSCARPATHIAN CLINOPTILOLITE COMPOSITIONS MODIFIED IN DIFFERENT CHEMICAL WAYS

Nazar Manko, Volodymyr Vasylechko, Oksana Kostiv, Olga Klyuchivska, Volodymyr Sydorchuk, Oleksandra Ilkov, Svitlana Bagday Bagday, Anatoliy Zelinskiy, Oleksandr Gromyko, Yaroslav Kalychak, Rostyslav Stoika


DOI: http://dx.doi.org/10.30970/sbi.1802.767

Abstract


Background. Natural clinoptilolite (CL) meets most of the requirements for the multifunctional mineral nanomaterials. It is considered biologically neutral and non-toxic. CL is the only representative of natural zeolites that has been approved for use in medical practice and food industry. Antibacterial activity of Transcarpathian clinoptilolite was shown to be enhanced via its modification using thermal, chemical and mechanochemical treatments. The natural form of this mineral contains a significant concentration of surface silanol (-OH) groups. An increase in the efficiency of zeolite-based materials in terms of biological activity can be achieved by means of thermal and chemical treatments, replacement of cations in the exchange complex, doping with heavy metal cations, or mechanochemical treatment.
Materials and Methods. FTIR spectroscopy, Electronic spectroscopy, Particle size distribution, IR spectroscopy, Crystal structure and morphology, Measurement of antibacterial activity.
Results. Intact and thermally modified CL was shown to exhibit weak antibacterial effect, while its mechanical modification led to an enhanced activity. It was established that H-form of clinoptilolite demonstrated higher efficiency in inhibiting the growth of Gram-positive bacteria, compared to the Na-form of the clinoptilolite, but their effect on growth of Gram-negative bacteria was insignificant. Such an activity was accompanied by an increase in the specific surface area and porosity that promoted better contact with bacteria.
Conclusions: Different samples of CL had dissimilar effect on specific types of bacteria. Intact CL has a weak antibacterial activity of inhibiting growth of microorganisms, while thermal, chemical, and mechanical modifications of the CL structure differentially increased such an activity. The H-form of CL inhibited the growth of Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) more effectively compared to the Na-form of CL. However, H-form of CL has a weak effect on growth of the Gram-negative bacteria (Pseudomonas aeruginosa, Pseudomonas fluorescens).


Keywords


Transcarpathian clinoptilolite, antimicrobial action, surface disinfectant, porous and crystalline structure, thermal, chemical and mechanochemical activation

Full Text:

PDF

References


Akhigbe, L., Ouki, S., Saroj, D., & Lim, X. M. (2014). Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions. Environmental Science and Pollution Research, 21(18), 10940-10948. doi:10.1007/s11356-014-2888-6
CrossrefPubMedGoogle Scholar

Alvarez-Aguiñaga, E. A., Elizalde-González, M. P., & Sabinas-Hernández, S. A. (2020). Unpredicted photocatalytic activity of clinoptilolite-mordenite natural zeolite. RSC Advances, 10(64), 39251-39260. doi:10.1039/d0ra06421a
CrossrefPubMedPMCGoogle Scholar

Armbruster, T. (2001). Clinoptilolite - heulandide: applications and basic research. In: A. Galarneau, F. Di Renzo, F. Fajula, J. Vedrine (Eds.), Zeolites and mesoporous materials at the down of the 21st century. Studies in Surfase Science and Catalysis (135, Part C). (pp. 13-27). Amsterdam: Elsevier. doi:10.1016/S0167-2991(01)81183-6
CrossrefGoogle Scholar

Blazheyevskiy, M. Ye., Chernykh, V. P., & Kovalenko, S. M. (2011). Peroksydni pokhidni karbonovykh kyslot yak dezinfektsiyni ta sterylizuyuchi zasoby [Peroxide derivatives of carboxylic acids as disinfectants and sterilants]. Kharkiv: Oryhinal. (In Ukrainian)

Charkhi, A., Kazemian, H., & Kazemeini, M. (2010). Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders. Powder Technology, 203(2), 389-396. doi:10.1016/j.powtec.2010.05.034
CrossrefGoogle Scholar

Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547-569. doi:10.1080/21505594.2021.1878688
CrossrefPubMedPMCGoogle Scholar

Downs, R. T., & Hall-Wallace, M. (2003). The American Mineralogist crystal structure database. American Mineralogist, 88(1), 247-250.
Google Scholar

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2013). Scientific Opinion on the safety and efficacy of clinoptilolite of sedimentary origin for all animal species. EFSA Journal, 11(1), 3039. doi:10.2903/j.efsa.2013.3039
CrossrefGoogle Scholar

Elaiopoulos, K., Perraki, Th., & Grigoropoulou, E. (2010). Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Microporous and Mesoporous Materials, 134(1-3), 29-43. doi:10.1016/j.micromeso.2010.05.004
CrossrefGoogle Scholar

Innocenzi, P. (2003). Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. Journal of Non-Crystalline Solids, 316(2-3), 309-319. doi:10.1016/s0022-3093(02)01637-x
CrossrefGoogle Scholar

Jang, Y. J., Kim, K., Tsay, O. G., Atwood, D. A., & Churchill, D. G. (2015). Update 1 of: destruction and detection of chemical warfare agents. Chemical Reviews, 115(24), PR1-PR76. doi:10.1021/acs.chemrev.5b00402
CrossrefPubMedGoogle Scholar

Kerr, K. G., & Snelling, A. M. (2009). Pseudomonas aeruginosa: a formidable and ever-present adversary. Journal of Hospital Infection, 73(4), 338-344. doi:10.1016/j.jhin.2009.04.020
CrossrefPubMedGoogle Scholar

Khan, M. M., Matussin, S. N., & Rahman, A. (2023). Recent development of metal oxides and chalcogenides as antimicrobial agents. Bioprocess and Biosystems Engineering, 46(9), 1231-1249. doi:10.1007/s00449-023-02878-1
CrossrefPubMedGoogle Scholar

Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevs'ka, T., Gun'ko, V. M., & Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87(3), 243-254. doi:10.1016/j.micromeso.2005.08.002
CrossrefGoogle Scholar

Kraljević Pavelić, S., Simović Medica, J., Gumbarević, D., Filošević, A., Pržulj, N., & Pavelić, K. (2018). Critical review on zeolite clinoptilolite safety and medical applications in vivo. Frontiers in Pharmacology, 9. doi:10.3389/fphar.2018.01350
CrossrefPubMedPMCGoogle Scholar

Kraus, W., & Nolze, G. (1996). POWDER CELL - a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/S0021889895014920
CrossrefGoogle Scholar

Milenkovic, J., Hrenovic, J., Matijasevic, D., Niksic, M., & Rajic, N. (2017). Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environmental Science and Pollution Research, 24(25), 20273-20281. doi:10.1007/s11356-017-9643-8
CrossrefPubMedGoogle Scholar

Nezamzadeh-Ejhieh, A., & Shirzadi, A. (2014). Enhancement of the photocatalytic activity of Ferrous Oxide by doping onto the nano-clinoptilolite particles towards photodegradation of tetracycline. Chemosphere, 107, 136-144. doi:10.1016/j.chemosphere.2014.02.015
CrossrefPubMedGoogle Scholar

Paryzhak, S. Y., Dumych, T. I., Klyuchivska, O. Y., Manko, N. O., Gryshchouk, G. V., Vasylechko, V. O., & Stoika, R. S. (2023). Silver doping of clinoptilolite particles enhances their effects on immunocompetent mammalian cells and inhibition of Candida albicans fungi. Applied Nanoscience, 13(7), 4817-4826. doi:10.1007/s13204-022-02624-1
CrossrefGoogle Scholar

Patrylak, L. K., Yakovenko, A. V., Nizhnik, B. O., Pertko, O. P., Povazhnyi, V. A., Kamenskyh, D. S., & Melnychuk, O. V. (2023). Natural zeolites modified with silver nanoparticles as promising sorbents with antibacterial properties. In O. Fesenko, L. Yatsenko (Eds.), Nanoelectronics, nanooptics, nanochemistry and nanobiotechnology, and their applications. NANO 2022. Springer proceedings in physics (Vol. 297, pp. 87-98). Cham: Springer. doi:10.1007/978-3-031-42708-4_5
CrossrefGoogle Scholar

Pavlović, J., Šuligoj, A., Opresnik, M., Tušar, N. N., Logar, N. Z., & Rajić, N. (2022). Studies of clinoptilolite-rich zeolitic tuffs from different regions and their activity in photodegradation of methylene blue. Catalysts, 12(2), 224. doi:10.3390/catal12020224
CrossrefGoogle Scholar

Prajitno, M. Y., Harbottle, D., Hondow, N., Zhang, H., & Hunter, T. N. (2020). The effect of pre-activation and milling on improving natural clinoptilolite for ion exchange of cesium and strontium. Journal of Environmental Chemical Engineering, 8(1), 102991.
CrossrefGoogle Scholar

Rodríguez-Iznaga, I., Shelyapina, M. G., & Petranovskii, V. (2022). Ion exchange in natural clinoptilolite: aspects related to its structure and applications. Minerals, 12(12), 1628. doi:10.3390/min12121628
CrossrefGoogle Scholar

Singh, V. V., Jurado-Sánchez, B., Sattayasamitsathit, S., Orozco, J., Li, J., Galarnyk, M., Fedorak, Y., & Wang, J. (2015). Multifunctional silver-exchanged zeolite micromotors for catalytic detoxification of chemical and biological threats. Advanced Functional Materials, 25(14), 2147-2155. doi:10.1002/adfm.201500033
CrossrefGoogle Scholar

Skubiszewska-Zięba, J., Khalameida, S., & Sydorchuk, V. (2016). Comparison of surface properties of silica xero- and hydrogels hydrothermally modified using mechanochemical, microwave and classical methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 139-153. doi:10.1016/j.colsurfa.2016.05.066
CrossrefGoogle Scholar

Stanić, V., & Tanasković, S. B. (2020). Antibacterial activity of metal oxide nanoparticles. In: S. Rajendran, A. Mukherjee, T. Nguyen, C. Godugu, R. Shukla (Eds.), Nanotoxicity: prevention and antibacterial applications of nanomaterials (pp. 241-274). Elsevier. doi:10.1016/b978-0-12-819943-5.00011-7
CrossrefGoogle Scholar

Sydorchuk, V., Vasylechko, V., Khyzhun, O., Gryshchouk, G., Khalameida, S., & Vasylechko, L. (2021). Effect of high-energy milling on the structure, some physicochemical and photocatalytic properties of clinoptilolite. Applied Catalysis A: General, 610, 117930. doi:10.1016/j.apcata.2020.117930
CrossrefGoogle Scholar

Tarasevich, Y. I., Polyakov, V. E., Penchov, V. Z. Kirov G. N., Minchev, K. I., Polyakov, I. G., & Badekba, L. I. (1991). Ion-exchange qualities and structural features of clinoptilolites of various deposits. Khimiia i Tekhnologiia Vody, 13, 132-140.
Google Scholar

Tomazović, B., Ćeranić, T., Sijarić, G. (1996). The properties of the NH4-clinoptilolite. Part 2. Zeolites, 16(4), 309-312. doi:10.1016/0144-2449(95)00117-4
CrossrefGoogle Scholar

Tong, Y., Zhang, Y., Tong, N., Zhang, Z., Wang, Y., Zhang, X., Zhu, S., Li, F., & Wang, X. (2016). HZSM-5 zeolites containing impurity iron species for the photocatalytic reduction of CO2 with H2O. Catalysis Science & Technology, 6(20), 7579-7585. doi:10.1039/c6cy01237j
CrossrefGoogle Scholar

Tušek, D., Ašperger, D., Bačić, I., Ćurković, L., & Macan, J. (2016). Environmentally acceptable sorbents of chemical warfare agent simulants. Journal of Materials Science, 52(5), 2591-2604. doi:10.1007/s10853-016-0552-x
CrossrefGoogle Scholar

Vasylechko, V. O., Fedorenko, V. O., Gromyko, O. M., Gryshchouk, G. V., Kalychak, Y. M., Tistechok, S. I., Us, I. L., & Tupys, A. (2020a). Sorption preconcentration of silver for atomic absorption analysis and antibacterial properties of the acid-modified clinoptilolite-Ag composite. Methods and Objects of Chemical Analysis, 15(2), 73-82. doi:10.17721/moca.2020.73-82
CrossrefGoogle Scholar

Vasylechko, V. O., Klyuchivska, O. Yu., Manko, N. O., Gryshchouk, G. V., Kalychak, Y. M., Zhmurko, I. I., & Stoika, R. S. (2020b). Novel nanocomposite materials of silver-exchanged clinoptilolite with pre-concentration of Ag(NH3)2+ in water possess enhanced anticancer action. Applied Nanoscience, 10(12), 4869-4878. doi:10.1007/s13204-020-01353-7
CrossrefGoogle Scholar

Vasylechko, V. O., Fedorenko, V. O., Gromyko, O. M., Gryshchouk, G. V., Kalychak, Y. M., Zaporozhets, O. A., & Lototska, M. T. (2017). Solid phase extractive preconcentration of silver from aqueous samples and antimicrobial properties of the clinoptilolite-Ag composite. Adsorption Science & Technology, 35(7-8), 602-611. doi:10.1177/0263617417703509
CrossrefGoogle Scholar

Vasylechko, V. O., Gryshchouk, G. V., Kuz'ma, Yu. B., Zakordonskiy, V. P., Vasylechko, L. O., Lebedynets, L. O., & Kalytovs'ka, M. B. (2003). Adsorption of cadmium on acid-modified Transcarpathian clinoptilolite. Microporous and Mesoporous Materials, 60(1-3), 183-196. doi:10.1016/s1387-1811(03)00376-7
CrossrefGoogle Scholar

Vasylechko, V. O., Gryshchouk, G. V., Lebedynets, L. O., Kuz'ma, Yu. B., Vasylechko, L. O., & Zakordonskiy, V. P. (1999). Adsorption of copper on Transcarpathian clinoptilolite. Adsorption Science & Technology, 17(2), 125-134. doi:10.1177/026361749901700206
CrossrefGoogle Scholar

Zakordonskiy, V. P., Vasylechko, V. O., Staszczuk, P., & Gryshchouk, G. V. (2004). Water thermodesorption and adsorption properties of the Transcarpathian zeolites. Visnyk of the Lviv University. Series Chemistry, 44, 247-256.
Google Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Nazar Manko, Volodymyr Vasylechko, Oksana Kostiv, Olga Klyuchivska, Volodymyr Sydorchuk, Oleksandra Ilkov, Svitlana Bagday Bagday, Anatoliy Zelinskiy, Oleksandr Gromyko, Yaroslav Kalychak, Rostyslav Stoika

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.