WATER EXCHANGE OF THE FOREST ECOSYSTEMS EPIGEIC BRYOPHYTES DEPENDING ON CHANGES OF THE STRUCTURAL AND FUNCTIONAL ORGANIZATION OF THEIR TURFS AND THE INFLUENCE OF THE LOCAL GROWTH ENVIRONMENTAL CONDITIONS
DOI: http://dx.doi.org/10.30970/sbi.1802.766
Abstract
Background. Moss cover plays a decisive role in increasing soil moisture in forest ecosystems. Bryophytes with high water content can significantly reduce water evaporation from the soil surface and retain it for an extended time. Under the influence of environmental conditions, mosses change the shape and organization of moss turfs thus regulating the efficiency of moisture absorption and retaining. Therefore, it is essential to establish the differences in the water exchange strategy of epigeic dominant moss species depending on the environmental conditions in reserved and anthropogenically disturbed forest ecosystems.
Materials and Methods. The research was carried out using the dominant epigeic, typical forest moss species Plagiomnium cuspidatum (Hedw.) T. J. Kop. and P. ellipticum (Brid.) T. J. Kop. from experimental plots of forest ecosystems, which differed in water and temperature regimes and light intensity. We determined the peculiarities of the influence of adaptations of moss turf morphological structure, individual plant’s physiological functional traits, and their metabolic osmoprotective changes based on the leading indicators of their water exchange (coefficients of water retention, water recovery, and drought resistance).
Results. It was established that humidity and light intensity in forest ecosystems changed the shape and organization of moss turfs, i.e., the height of individual shoots in the turf and the density and size of leaves. The predominance of the generative or vegetative type of moss reproduction led to significant changes in the morphology of shoots, physiological functional traits of plants, and the density of the turf structure, which was regulated due to the increase in airstream turbulence and wind penetration, absorption and evaporation of water. The hydration of moss tissues was maintained due to the rise in the total carbohydrate content as well as the soluble fraction content primarily in the vegetative shoots.
Conclusions. Mosses adapted to variable microclimatic conditions of forest ecosystems due to endohydricity and water retention mechanisms in external capillary spaces, i.e., changes in height, shape, and density of turfs, shoot morphology, various ratios of fertile to sterile plants, and their physiological functional traits. The internal regulation of water potential of cells was ensured by an increased concentration of osmoprotectors (carbohydrates, primarily their soluble fraction).
Keywords
Full Text:
PDFReferences
Ah-Peng, C., Cardoso, A. W., Flores, O., West, A., Wilding, N., Strasberg, D., & Hedderson, T. A. J. (2017). The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. Journal of Hydrology, 548, 665-673. doi:10.1016/j.jhydrol.2017.03.043 Crossref ● Google Scholar | ||||
| ||||
Bates, J. W. (1998). Is "life-form" a useful concept in bryophyte ecology? Oikos, 82(2), 223-237. doi:10.2307/3546962 Crossref ● Google Scholar | ||||
| ||||
Coelho, M. C. M., Gabriel, R., & Ah-Peng, C. (2023). Characterizing and quantifying water content in 14 Species of bryophytes present in Azorean Native Vegetation. Diversity, 15(2), 295. doi:10.3390/d15020295 Crossref ● Google Scholar | ||||
| ||||
Cruz de Carvalho, R., Maurício, A., Pereira, M. F., Marques da Silva, J., & Branquinho, C. (2019). All for one: the role of colony morphology in bryophyte desiccation tolerance. Frontiers in Plant Science, 10, 1360. doi:10.3389/fpls.2019.01360 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Eldridge, D. J., Delgado-Baquerizo, M., Quero, J. L., Ochoa, V., Gozalo, B., García-Palacios, … Maestre, F. T. (2020a). Surface indicators are correlated with soil multifunctionality in global drylands. Journal of Applied Ecology, 57(2), 424-435. doi:10.1111/1365-2664.13540 Crossref ● Google Scholar | ||||
| ||||
Eldridge, D. J., Reed, S., Travers, S. K., Bowker, M. A., Maestre, F. T., Ding, J., ... Zhao, Y. (2020b). The pervasive and multifaceted influence of biocrusts on water in the world's drylands. Global Change Biology, 26(10), 6003-6014. doi:10.1111/gcb.15232 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Glime, J. M. (2019). Bryophyte ecology. Vol. 1. Physiological ecology. Michigan Technological University and the International Association of Bryologists. Retrieved from http://digitalcommons.mtu.edu/bryophyte-ecology1 | ||||
| ||||
He, X., He, K. S., & Hyvönen, J. (2016). Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49-60. doi:10.1016/j.ppees.2016.02.005 Crossref ● Google Scholar | ||||
| ||||
Hodgetts, N. G., Söderström, L., Blockeel, T. L., Caspari, S., Ignatov, M. S., Konstantinova, N. A., … & Porley, R. D. (2020). An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology, 42(1), 1-116. doi:10.1080/03736687.2019.1694329 Crossref ● Google Scholar | ||||
| ||||
Hooper, D. U., Adair, E. C., Cardinale, B. J., Byrnes, J. E. K., Hungate, B. A., Matulich, K. L., Gonzalez, A., Duffy, J. E., Gamfeldt, L., & O'Connor, M. I. (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486(7401), 105-108. doi:10.1038/nature11118 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Ievinsh, G., Gaile, L., Elferts, D., & Liepiņa, L. (2020). Relationship between functional traits, functional types, and habitat in boreonemoral bryophytes. Proceedings of the Latvian Academy of Sciences. Section B: Natural, Exact and Applied Sciences, 74(3), 196-205. doi:10.2478/prolas-2020-0031 Crossref ● Google Scholar | ||||
| ||||
Jauregui-Lazo, J., Wilson, M., & Mishler, B. D. (2023). The dynamics of external water conduction in the dryland moss Syntrichia. AoB Plants, 15(3), 1-11. doi:10.1093/aobpla/plad025 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Kiriziy, D. A., & Stasik, O. O. (2022). Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants nanochelates. Fiziologia Rastenij i Genetika, 54(2), 95-122. doi:10.15407/frg2022.02.095 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Kürschner, H. (2004). Life strategies and adaptations in bryophytes from the Near and Middle East. Turkish Journal of Botany, 28(1), 73-84. Google Scholar | ||||
| ||||
Lobachevska, O. V., Ulychna, K. O., & Demkiv O. T. (1986). Features of restoration and vegetative reproduction of Plagiomnium undulatum (Hedw.) Kop. (Mniaceae, Bryopsida). Ukrainskyi botanichnyi zhurnal, 43(3), 30-34. (In Ukrainian) Google Scholar | ||||
| ||||
Lobachevska, O., Sokhanchak, R., & Beshley, S. (2018). Structural and functional organization of moss turfs in technogenically transformed territories of the Chervonograd mining and industrial area. Visnyk of Lviv University. Series Biology, 79, 86-94. doi:10.30970/vlubs.2018.79.09 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Lobachevska, O. V., Rabyk, I. V., & Karpinets, L. I. (2023). Epigeic bryophytes of the forest ecosystems, peculiarities of their water exchange and productivity depending on the ecological locality conditions. Chornomorski Botanical Journal, 19(2), 187-199. doi:10.32999/ksu1990-553X/2023-19-2-3 (In Ukrainian) Crossref ● Google Scholar | ||||
| ||||
Mishler, B. D. (2001). The biology of bryophytes - bryophytes aren't just small tracheophytes. American Journal of Botany, 88(11), 2129-2131. doi.org/10.2307/3558438 Crossref ● Google Scholar | ||||
| ||||
Müller, S. J., Gütle, D. D., Jacquot, J.-P., & Reski, R. (2016). Can mosses serve as model organisms for forest research? Annals of Forest Science, 73(1), 135-146. doi:10.1007/s13595-015-0468-7 Crossref ● Google Scholar | ||||
| ||||
Oishi, Y. (2018). Evaluation of the water-storage capacity of bryophytes along an altitudinal gradient from temperate forests to the alpine zone. Forests, 9(7), 433. doi:10.3390/f9070433 Crossref ● Google Scholar | ||||
| ||||
Polchyna, S. M. (1991). Metodychni rekomendatsii do laboratornykh i praktychnykh robit z gruntoznavstva [Methodical recommendations for laboratory and practical works in soil science]. Chernivtsi: ChDU. (In Ukrainian) | ||||
| ||||
Proctor, M. C. F. (2008). Physiological ecology. In B. Goffinet & A. J. Shaw (Eds.), Bryophyte Biology (pp. 237-268). Cambridge: Cambridge University Press. doi:10.1017/cbo9780511754807.007 Crossref ● Google Scholar | ||||
| ||||
Raven, J. A. (2003). Long-distance transport in non-vascular plants. Plant, Cell & Environment, 26(1), 73-85. doi:10.1046/j.1365-3040.2003.00920.x Crossref ● Google Scholar | ||||
| ||||
Rice, S. K. (2012). The cost of capillary integration for bryophyte canopy water and carbon dynamics. Lindbergia, 35, 53-62. Google Scholar | ||||
| ||||
Rice, S. K., & Schneider, N. (2004). Cushion size, surface roughness, and the control of water balance and carbon flux in the cushion moss Leucobryum glaucum (Leucobryaceae). American Journal of Botany, 91(8), 1164-1172. doi:10.3732/ajb.91.8.1164 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Rossi, S. E., Callaghan, T. V., Sonesson, M., & Sheffieldi, E. (2001). Variation and control of growth-form in the moss Hylocomium splendens. Journal of Bryology, 23(4), 283-292. doi:10.1179/jbr.2001.23.4.283 Crossref ● Google Scholar | ||||
| ||||
Sadasivam, S., & Manickam, A. (2007). Biochemical methods. New Delhi: New Age International. Google Scholar | ||||
| ||||
Senf, C., Buras, A., Zang, C. S., Rammig, A., & Seidl, R. (2020). Excess forest mortality is consistently linked to drought across Europe. Nature Communications, 11(1), 6200. doi:10.1038/s41467-020-19924-1 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Sokołowska, K., Turzańska, M., & Nilsson, M.-C. (2017). Symplasmic and apoplasmic transport inside feather moss stems of Pleurozium schreberi and Hylocomium splendens. Annals of Botany, 120(5), 805-817. doi:10.1093/aob/mcx102 Crossref ● PubMed ● PMC ● Google Scholar | ||||
| ||||
Thielen, S. M., Gall, C., Ebner, M., Nebel, M., Scholten, T., & Seitz, S. (2021). Water's path from moss to soil: a multi-methodological study on water absorption and evaporation of soil-moss combinations. Journal of Hydrology and Hydromechanics, 69(4), 421-435. doi:10.2478/johh-2021-0021 Crossref ● Google Scholar | ||||
| ||||
van Tooren, B. F., Odé, B., During, H. J., & Bobbink, R. (1990). Regeneration of species richness in the bryophyte layer of Dutch chalk grasslands. Lindbergia, 16(5), 153-160. Google Scholar | ||||
| ||||
Virchenko, V. M., & Nyporko, S. O. (2022). Prodromus of sporen plants of Ukraine: bryophytes. Kyiv: Naukova dumka. (In Ukrainian) Google Scholar | ||||
| ||||
Vitt, D. H., Crandall-Stotler, B., & Wood, A. J. (2014). Bryophytes: survival in a dry world through tolerance and avoidance. In N. Rajakaruna, R. S. Boyd, & T. B. Harris (Eds.), Plant ecology and evolution in harsh environments (pp. 267-295). New York: Nova Science Publishers. Google Scholar | ||||
| ||||
Voortman, B. R., Bartholomeus, R. P., van Bodegom, P. M., Gooren, H., van der Zee, S. E. A. T. M., & Witte, J.-P. M. (2013). Unsaturated hydraulic properties of xerophilous mosses: towards implementation of moss covered soils in hydrological models. Hydrological Processes, 28(26), 6251-6264. doi:10.1002/hyp.10111 Crossref ● Google Scholar | ||||
| ||||
Wang, Z., & Bader, M. Y. (2018). Associations between shoot-level water relations and photosynthetic responses to water and light in 12 moss species. AoB Plants, 10(3). doi:10.1093/aobpla/ply034 Crossref ● Google Scholar | ||||
| ||||
Zajączkowska, U., Grabowska, K., Kokot, G., & Kruk, M. (2017). On the benefits of living in clumps: a case study on Polytrichastrum formosum. Plant Biology, 19(2), 156-164. doi:10.1111/plb.12532 Crossref ● PubMed ● Google Scholar | ||||
| ||||
Zotz, G., & Kahler, H. (2007). A moss "canopy" - small-scale differences in microclimate and physiological traits in Tortula ruralis. Flora - Morphology, Distribution, Functional Ecology of Plants, 202(8), 661-666. doi:10.1016/j.flora.2007.05.002 Crossref ● Google Scholar | ||||
| ||||
Zúñiga-González, P., Zúñiga, G. E., Pizarro, M., & Casanova-Katny, A. (2016). Soluble carbohydrate content variation in Sanionia uncinata and Polytrichastrum alpinum, two Antarctic mosses with contrasting desiccation capacities. Biological Research, 49(1). doi:10.1186/s40659-015-0058-z Crossref ● PubMed ● PMC ● Google Scholar |
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Oksana Lobachevska, Lyudmyla Karpinets
This work is licensed under a Creative Commons Attribution 4.0 International License.