SPATIAL VARIATION OF EARTHWORM COMMUNITIES IN THE MOTORWAY PROXIMITY

Oleksandr Harbar, Viktoriia Moroz, Diana Harbar, Dmytro Vyskushenko, Oleksandr Kratiuk


DOI: http://dx.doi.org/10.30970/sbi.1802.768

Abstract


Background. The spatial features of the structure of earthworm communities in the area of influence of motor vehicles were analyzed. Five species of lumbricides belonging to three families were found in the studied biocenosis located near the M06 Kyiv–Chop motorway (Ukraine): Aporrectodea caliginosa (Savigny, 1826), A. rosea (Savigny, 1826), A. trapezoidеs (Dugesi, 1828), Lumbricus terrestris (Linnaeus, 1758) and Dendrobaena octaedra (Savigny, 1826).
Materials and Methods. Earthworms were collected during 2021–2022 in the biocenosis near the M06 Kyiv–Chop motorway (Berezyna village, Zhytomyr region). The material was collected by excavation and layer-by-layer analysis of soil samples. The thickness of each layer was 10 cm. The maximum depth – 0.5 m. Samples were taken every 10 m from the road to a distance of 210 m. The distance between the rows of samples along the road was 30 m. STATISTICA software package was used for statistical analysis of the data. Biodiversity assessments were calculated using the PAST software package. SAGA and Q-GIS software packages were used for spatial analysis and mapping of the data.
Results and Discussion. The key factor that influences the structure of earthworm communities in the area of road transport impact is the distance from the source of impact. The maximum values of the dominance, Margalef and Berger–Parker indexes and the number of species are observed in areas near the motorway, while the values of the Shannon, Simpson, Menhinik and Brillouin indexes have the opposite trend. There is a correlation between the spatial variability of the structure of earthworm communities and the values of reflectance in the bands B3, B5, B11 of the Sentinel-2 satellite image. It allowed us to apply a geographically weighted regression algorithm with several predictors that indirectly reflect environmental parameters to the data.
Conclusion. The results obtained show that the use of predictors allows us to obtain a more mosaic model of the distribution of indicator values compared to interpolation by kriging, which can be used to predict the values of earthworm biodiversity indicators within the study area.


Keywords


Lumbricidae, biodiversity, biocenosis, road traffic impact

Full Text:

PDF

References


Amossé, J., Dózsa-Farkas, K., Boros, G., Rochat, G., Sandoz, G., Fournier, B., Mitchell, A. D. E., & Le Bayon, R-C. (2016). Patterns of earthworm, enchytraeid and nematode diversity and community structure in urban soils of different ages. European Journal of Soil Biology, 73, 46-58. doi:10.1016/j.ejsobi.2016.01.004
CrossrefGoogle Scholar

Bai, L., Shu, Y., & Guo, Y. (2020). Estimating aboveground biomass of urban trees by high resolution remote sensing image: a case study in Hengqin, Zhuhai, China. IOP Conference Series: Earth and Environmental Science, 569(1), 012053. doi:10.1088/1755-1315/569/1/012053
CrossrefGoogle Scholar

Ban, Y., Gong, P., & Giri, C. (2015). Global land cover mapping using Earth observation satellite data: Recent progresses and challenges. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 1-6. doi:10.1016/j.isprsjprs.2015.01.001
CrossrefGoogle Scholar

Bordyug, N. S., & Lagovska, V. V. (2014). The influence of road transport on the quality of soils of the Red Army district. Modern problems of balanced nature management. Collection of Podilskyi's scientific works State Agrarian and Technical University, 169-170. Retrieved from http://ir.polissiauniver.edu.ua/handle/123456789/4817 (In Ukrainian)

Chuvaev, P. I. (2013). Vplyv avtomobilnoho transportu na navkolyshnie seredovyshche [Influence of motor transport on environment]. Herald of the National Transport University, 27, 380-383. (In Ukrainian)
Google Scholar

Congedo, L. (2021). Semi-automatic classification plugin: a Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. doi: 10.21105/joss.03172
CrossrefGoogle Scholar

Coops, N. C., Bolton, D. K., Hobi, M. L., & Radeloff, V. C. (2019). Untangling multiple species richness hypothesis globally using remote sensing habitat indices. Ecological Indicators, 107, 105567. doi:10.1016/j.ecolind.2019.105567
CrossrefGoogle Scholar

Culbert, P. D., Radeloff, V. C., St-Louis, V., Flather, C. H., Rittenhouse, C. D., Albright, T. P., & Pidgeon, A. M. (2012). Modeling broad-scale patterns of avian species richness across the Midwestern United States with measures of satellite image texture. Remote Sensing of Environment, 118, 140-150. doi:10.1016/j.rse.2011.11.004
CrossrefGoogle Scholar

Damtew, Y. T., Verbeiren, B., Awoke, A., & Triest, L. (2021). Satellite imageries and field data of macrophytes reveal a regime shift of a tropical lake (Lake Ziway, Ethiopia). Water, 13(4), 396. doi:10.3390/w13040396
CrossrefGoogle Scholar

Foody, G. M. (2005). Mapping the richness and composition of British breeding birds from coarse spatial resolution satellite sensor imagery. International Journal of Remote Sensing, 26(18), 3957-3974. doi:10.1080/01431160500165716
CrossrefGoogle Scholar

Fotheringham, S. A., Charlton, M., & Brunsdon, C. (1998). Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11), 1905-1927. doi:10.1068/a301905
CrossrefGoogle Scholar

Furukawa, F., Morimoto, J., Yoshimura, N., & Kaneko, M. (2020). Comparison of conventional change detection methodologies using high-resolution imagery to find forest damage caused by typhoons. Remote Sensing, 12(19), 3242. doi:10.3390/ rs12193242
CrossrefGoogle Scholar

Khokhryakova, A. I. (2016). Soils of the cities: features of genesis, classification and diagnostics. Odesa National University Herald. Series: Geography & Geology, 21(1(28)), 110-125. doi:10.18524/2303-9914.2016.1(28).90336 (In Ukrainian)
CrossrefGoogle Scholar

Liu, S., Dong, Y., Sun, Y., Li, J., An, Y., & Shi, F. (2019). Modelling the spatial pattern of biodiversity utilizing the high-resolution tree cover data at large scale: case study in Yunnan province, Southwest China. Ecological Engineering, 134, 1-8. doi:10.1016/j.ecoleng.2019.05.001
CrossrefGoogle Scholar

Malovichko, O. V., & Holovnya, Yu. P. (2008). Environmental impact analysis of pollution highways Kyiv. Proceedings of National Aviation University, 37(4), 89-92. doi:10.18372/2306-1472.37.1639 (In Ukrainian)
CrossrefGoogle Scholar

Maréchal, J., Hoeffner, K., Marié, X., & Cluzeau, D. (2021). Response of earthworm communities to soil engineering and soil isolation in urban landscapes. Ecological Engineering, 169, 106307. doi:10.1016/j.ecoleng.2021.106307
CrossrefGoogle Scholar

Maselli, F., Chiesi, M., & Corona, P. (2014). Use of geographically weighted regression to enhance the spatial features of forest attribute maps. Journal of Applied Remote Sensing, 8(1), 083533. doi:10.1117/1.jrs.8.083533
CrossrefGoogle Scholar

National report on the state of the natural environment in Ukraine in 2020. (March 28, 2023). Ministry of Environmental Protection and Natural Resources of Ukraine. Retrieved from https://mepr.gov.ua/wp-content/uploads/2022/10/Natsionalna-Dopovid-2020-2.pdf (In Ukrainian)

Ooms, A., Dias, A. T. C., van Oosten, A. R., Cornelissen, J. H. C., Ellers, J., & Berg, M. P. (2020). Species richness and functional diversity of isopod communities vary across an urbanisation gradient, but the direction and strength depend on soil type. Soil Biology and Biochemistry, 148, 107851. doi:10.1016/j.soilbio.2020.107851
CrossrefGoogle Scholar

Pylypenko, Yu. V., & Skok, S. V. (2015). Otsinka rivnia zabrudnennia gruntu vazhkymy metalamy v mezhakh miskoi systemy (na prykladi m. Kherson) [Evaluation of the level of soil contamination by heavy metals within the limits of urban system (through the example of Kherson city)]. Biology and Valeology, 17, 138-145. (In Ukrainian)
Google Scholar

Regional report on the state of the natural environment of Zhytomyr Region in 2021 (February 18, 2023). Department of Ecology and Natural Resources of Zhytomyr Oblast. Retrieved from https://mepr.gov.ua/wp-content/uploads/2022/10/Regionalna-dopovid-ZHytomyrska-ODA-2021.pdf (In Ukrainian)

Rusilo, P. O., Kostyuk, V. V., & Afonin, V. M. (2008). Vplyv na dovkillia avtomobilnoho transportu na vsikh stadiiakh yoho zhyttievoho tsyklu [Influence on environment of motor transport on all of the stages him life cycle]. Scientific Bulletin of UNFU, 18(3), 85-89. Retrieved from https://nv.nltu.edu.ua/Archive/2008/18_3/85_Rusilo_18_3.pdf (In Ukrainian)
Google Scholar
Seiler, A. (2001). Ecological effects of roads: a review. Uppsala: Swedish University of Agricultural Sciences.
Google Scholar

Serbenyuk, A. A. (2018). Vplyv avtomobilnoho transportu na navkolyshnie seredovyshche v mezhakh transportnoi systemy Vinnytskoi oblasti [Influence of motor transport on the environment within the transport system of the Vinnytsia region]. Young Scientist, 8(60), 223-227. Retrieved from https://molodyivchenyi.ua/index.php/journal/article/view/4150/4082 (In Ukrainian)
Google Scholar

Stoyko, S., & Koynova, I. (2012) Suchasni vydy antropohennoho vplyvu na zhyttieve seredovyshche [Modern types of anthropogenic impact on vital environment]. Ukrainian Geographical Journal, 1, 50-57. Retrieved from https://ukrgeojournal.org.ua/sites/default/files/UGJ-2012-1-50_0.pdf (In Ukrainian)
Google Scholar

Vagalyuk, L., Minyailo, A., & Chayka, V. (2016). Riznomanittia i trofichni zviazky entomofauny ahrolandshaftiv Lisostepu Ukrainy [Diversity and trophic relations entomofauna agricultural landscapes Ukraine steppe]. Scientific Bulletin of the National University of Bioresources and Nature Management of Ukraine, 234, 78-79. Retrieved from https://journals.indexcopernicus.com/api/file/viewByFileId/72551.pdf (In Ukrainian)
Google Scholar

Wood, E. M., Pidgeon, A. M., Radeloff, V. C., & Keuler, N. S. (2012). Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 121, 516-526. doi:10.1016/j.rse.2012.01.003
CrossrefGoogle Scholar

Yanyu, L. Ü., Chao, L. I., Guanglong, O. U., Hexian, X., Anchao, W., Bo, Z., & Hui, X. U. (2017). Remote sensing estimation of biomass of Pinus kesiya var. langbianensis by geographically weighted regression models. Forest Resources Wanagement, 1, 82-90.
Google Scholar

Yuxing, Y., Yuanyuan, Y., Yongsheng, W., & Jianwu, Y. (2023). Trends and attribution analysis of habitat quality changes in Beijing-Tianjin-Hebei region over the past 40 years. Remote Sensing Technology and Application, 38(2), 251-263.
Google Scholar

Zheng, X., Zou, Z., Xu, C., Lin, S., Wu, Z., Qiu, R., Hu, X., & Li, J. (2021). A new remote sensing index for assessing spatial heterogeneity in urban ecoenvironmental-quality-associated road networks. Land, 11(1), 46. doi:10.3390/land11010046
CrossrefGoogle Scholar

Zhou, X., & Wang, Y. (2011). Dynamics of land surface temperature in response to land-use/cover change. Geographical Research, 49(1), 23-36. doi:10.1111/j.1745-5871.2010.00686.x
CrossrefGoogle Scholar

Zhu, C., Zhang, X., Zhou, M., He, S., Gan, M., Yang, L., & Wang, K. (2020). Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecological Indicators, 117, 106654. doi:10.1016/j.ecolind.2020.106654
CrossrefGoogle Scholar


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Oleksandr Harbar, Viktoriia Moroz, Diana Harbar, Dmytro Vyskushenko, Oleksandr Kratiuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.