REDUCTION OF CHROMIUM (VI) COMPOUNDS BY SULFATE-REDUCING BACTERIA

T. B. Peretyatko, S. P. Gudz


DOI: http://dx.doi.org/10.30970/sbi.0402.092

Abstract


Bacteria performing dissimilatory sulfate reduction were isolated from Yaziv sulfur deposit wells. 12 cultures were resistant to the presence of 1 mM Cr (VI) in the medium. Addition of 5 mM Cr (VI) lead to the near two-fold biomass and hydrogen sulfide content decrease. At the absence of sulfate in the medium bacteria use Cr (VI) as the final electron acceptor. At the presence of sulfate and Cr (VI) in the medium the content of the latter decreased due to its reduction by hydrogen sulfide. Cr (ІІI) at concentrations 1–5 mM doesn’t does not have considerable inhibitory effect on the sulfate-reducing activity. The ability of the isolated sulfate-reducing bacteria to detoxify Cr (VI) by its usage as the final electron acceptor and its reduction by hydrogen sulfide, produced by bacteria, make them perspective in the environment bioremediation from toxic Cr (VI) compounds.


Keywords


Cr (VI), sulfate reduction, sulfate-reducing bacteria, hydrogen sulfide, sulfate, bioremediation

References


1. Крешков А.П. Основы аналитической химии. Книга 1. - М.: Госхимиздат, 1961. - 640 с.

2. Перетятко Т., Гнатуш С., Гудзь С. Утворення сульфіду Desulfovibrio desulfuricans Ya-11 за різних умов культивування. Вісник Львів. ун-ту. Серія біол, 2007; 43: 180-184.

3. Почвы. Метод определения ионов сульфата в водной вытяжке. ГОСТ 26426-85. М.: Изд-во стандартов, 1985.

4. Федорович Д.В., Кшемінська Г.П., Баб'як Л.Я. Можливості використання дріжджів для очищення стічних вод, забруднених сполуками хрому. Журн. агробіол. та екол, 2005; 2(1-2).

5. Allen H.E., Garrison A.W., Luther G.W. Metals in Surface Waters. Chelsea, Michigan: Ann Arbor Press, 1998. 262 р.

6. Anderson R.A. Chromium, glucose intolerance and diabetes. J. Am. Coll. Nutr, 1998; 17(6): 548-555.
https://doi.org/10.1080/07315724.1998.10718802
PMid:9853533

7. Basu M., Bhattacharya S., Paul A.K. Isolation and characterization of chromium-resistant bacteria from tannery effluents. Bull. Environ. Contam. Toxicol, 1997; 58(4): 535-542.
https://doi.org/10.1007/s001289900368
PMid:9060370

8. Battaglia-Brunet F., Foucher S., Denamur A. et al. Reduction of chromate by fixed films of sulfate-reducing bacteria using hydrogen as an electron source. J. Ind. Microbiol. Biotechnol, 2002; 28(3): 154-159.
https://doi.org/10.1038/sj/jim/7000226

9. Battaglia-Brunet F., Foucher S., Denamur A. et al. Chromate reduction at low sulphate concentration in hydrogen-fed bioreactors. Environ. Technol, 2004; 25(1): 101-109.
https://doi.org/10.1080/09593330409355442
PMid:15027654

10. Bopp L.H., Chakrabarty A.M., Ehrlich H.L. Chromate resistance plasmid in Pseudomonas fluorescens. J. Bacteriol, 1983; 155 (3): 1105-1109.

11. Bopp L.H., Elrich H.L. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol, 1988; 150(5): 426-431.
https://doi.org/10.1007/BF00422281

12. Cervantes C., Campos-García J., Devars S. et al. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev, 2001; 25(3): 335-347.
https://doi.org/10.1111/j.1574-6976.2001.tb00581.x
PMid:11348688

13. Chardin B., Giudici-Orticoni M.T., De Luca G. et al. Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl. Microbiol. Biotechnol, 2003; 63(3): 315-321.
https://doi.org/10.1007/s00253-003-1390-8
PMid:12861426

14. Chirwa E.M.N., Wang Y. Simultaneous chromium (VI) reduction and phenol degradation i an anaerobic consortium of bacteria. Wat. Res, 2000; 34(7): 2376-2384.
https://doi.org/10.1016/S0043-1354(99)00363-2

15. Committee on Ground Water Cleanup Alternatives: Alternatives for Ground Water Cleanup. Washington D.C., National Academy Press, 1994.

16. Costa M. Toxicology and carcinogenicity of Cr (VI) in animal models and humans. Crit. Rev. Toxicol, 1997; 27(5): 431-442.
https://doi.org/10.3109/10408449709078442
PMid:9347224

17. Czako-Ver K., Batie M., Raspor P. et al. Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiol. Lett, 1999; 178(1): 109-115.
https://doi.org/10.1016/S0378-1097(99)00342-0

18. Desjardin V., Bayard R., Huck N. et al. Effect of microbial activity on the mobility of chromium in soils. Waste Manag, 2002; 22(2): 195-200.
https://doi.org/10.1016/S0956-053X(01)00069-1

19. Francisco R., Alpoim M.C., Morais P.V. Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J. Appl. Microbiol, 2002; 92(5): 837-843.
https://doi.org/10.1046/j.1365-2672.2002.01591.x
PMid:11972686

20. Fredrickson J.K., Zachara J.M., Kennedy D.W. et al. Reduction of U (VI) in geothite (a-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim. Cosmochim. Acta, 2000; 64(18): 3085-3098.
https://doi.org/10.1016/S0016-7037(00)00397-5

21. Fujii E., Toda K., Ohtake H. Bacterial reduction of toxic hexavalent chromium using a fed-batch culture of Enterobacter cloacae HO1. J. Ferment. Bioeng, 1990; 69(6): 365-367.
https://doi.org/10.1016/0922-338X(90)90246-S

22. Gad G.M., White C. Uptake and intracellular compartmentation of thorium in Saccharomyces cerevisiae. Environ Pollut,1989; 61(3):187-197.
https://doi.org/10.1016/0269-7491(89)90240-6

23. Gouda M.K. Studies on chromate reduction by three Aspergillus species. Fresenius Envir. Bull, 2000; 9: 799-808.

24. Horton R.N., Apel W.A., Thompson V.S. et al. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiol, 2006; 6(5).
https://doi.org/10.1186/1471-2180-6-5
PMid:16436214 PMCid:PMC1382237

25. House D.A. Recent developments in chromium chemistry. Adv. Inorg. Chem, 1996; 44: 341-373.
https://doi.org/10.1016/S0898-8838(08)60134-8

26. James B.R., Bartlett R. Behavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation. J. Environ. Qual, 1983; 12: 173-176.
https://doi.org/10.2134/jeq1983.00472425001200020004x

27. Kotas J., Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut, 2000; 107(3): 263-283.
https://doi.org/10.1016/S0269-7491(99)00168-2

28. Kwak Y.H., Lee D.S., Kim H.B. Vibrio harveyi nitroreductase is also a chromate reductase. Appl. Environ. Microbiol, 2003; 69(8): 4390-4395.
https://doi.org/10.1128/AEM.69.8.4390-4395.2003
PMid:12902220 PMCid:PMC169119

29. Lee K.P., Ulrich C.E., Geil R.G., Trochimowicz H.J. Inhalation toxicity of chromium dioxide dust to rats after two years exposure. Sci. Tot. Environ, 1989; 86: 83-108.
https://doi.org/10.1016/0048-9697(89)90197-6

30. Losi M.E., Amrhein C., Frankenberger W.T. Environmental biochemistry of chromium. Rev. Environ. Contam. Toxicol, 1994; 136: 91-121.
https://doi.org/10.1007/978-1-4612-2656-7_3
PMid:8029492

31. Losi M.E., Frankenberger W.T. Chromium-resistant microorganisms isolated from evaporation ponds of a metal processing plant. Water Air Soil Pollut, 1994; 74(3-4): 405-413.

32. McLean J., Beveridge T.J. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl. Environ. Microbiol, 2001; 67(3): 1076-1084.
https://doi.org/10.1128/AEM.67.3.1076-1084.2001
PMid:11229894 PMCid:PMC92697

33. Michel C., Brugna M., Aubert C. et al. Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases. Appl. Microbiol. Biotechnol, 2001; 55(1): P. 95-100.
https://doi.org/10.1007/s002530000467
PMid:11234966

34. Muter O., Lubinya I., Millers D. et al. Cr (VI) sorption by intact and dehydrated Candida utilis. Process Biochem, 2002; 38(1): 123-131.
https://doi.org/10.1016/S0032-9592(02)00065-1

35. Myers C.R., Carstens B.P., Antholine W.E., Myers J.M. Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol, 2000; 88(1): 98-106.
https://doi.org/10.1046/j.1365-2672.2000.00910.x

36. Nepple B.B., Kessi J., Bachofen R. Chromate reduction by Rhodobacter sphaeroides. J. Ind. Microbiol. Biotechnol, 2000; 25(4): 198-203.
https://doi.org/10.1038/sj.jim.7000049

37. Ohtake H., Cervantes C., Silver S. Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid. J. Bacteriol, 1987; 169(8): 3853-3856.
https://doi.org/10.1128/jb.169.8.3853-3856.1987
PMid:3112130

38. Pattanapipitpaisal P., Brown N.L., Macaskie L.E. Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol. Lett, 2001; 23(10): 61-65.
https://doi.org/10.1023/A:1026750810580

39. Postgate J.R. The sulfate-reducing bacteria. 2nd ed., Cambridge: Cambridge Univ. press, 1984. 199 p.

40. Ramírez-Díaz M.I., Díaz-Pérez C., Vargas E. et al. Mechanisms of bacterial resistance to chromium compounds. Biometals, 2008; 21(3): 321-332.
https://doi.org/10.1007/s10534-007-9121-8
PMid:17934697

41. Ramirez-Ramirez R., Calvo-Mendez C., Avila-Rodriguez M., Gutierrez-Corona J.F. Chromate resistance and reduction in a yeast strain isolated from industrial waste discharges. In: Environmental Engineering Application (Raynal J.A., Nuckols J.R., Reyes R. and Ward M., Eds.). Water Resources Publication, LCC, Englewood, CO, USA, 2000: 437-445.

42. Raspor P., Batic M., Jamnik P. et al. The influence of chromium compounds on yeast physiology. Acta Microbiol. Immunol. Hung, 2000; 47(2-3): 143-173.
https://doi.org/10.1556/AMicr.47.2000.2-3.2
PMid:10895303

43. Rege M.A., Petersen J.N., Johnstone D.L. et al. Bacterial reduction of hexavalent chromium by Enterobacter cloacae strain H01 grown on sucrose. Biotechnol. Lett, 1997; 19(7): 691-694.
https://doi.org/10.1023/A:1018355318821

44. Saxena D., Levin R., Firer M.A. Removal of chromate from industrial effluent by a new isolate of Staphylococcus cohnii. Water Sci. Technol, 2000; 42(1-2): 93-98.
https://doi.org/10.2166/wst.2000.0297

45. Shakoori A.R., Makhdoom M., Haq R.U. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolate from effluents of tanneries. Appl. Microbiol. Biotechnol, 2000; 53(3): 348-351.
https://doi.org/10.1007/s002530050033
PMid:10772478

46. Shen H., Wang Y. Biological reduction of chromium by E. coli. J. Environ. Eng, 1994; 120: 560-572.
https://doi.org/10.1061/(ASCE)0733-9372(1994)120:3(560)

47. Smith F.W., Hawkesford M.J., Prosser I.M., Clarkson D.T. Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane. Mol. Gen. Genet, 1995; 247(6): 709-715.
https://doi.org/10.1007/BF00290402
PMid:7616962

48. Smith W.L., Gadd G.M. Reduction and precipitation of chromate by mixed culturesulphate-reducing bacterial biofilms. Appl. Microbiol, 2000; 88: 983-991.
https://doi.org/10.1046/j.1365-2672.2000.01066.x
PMid:10849174

49. Snow E.T. Effect of chromium on DNA replication in vitro. Environ. Health. Perspect, 1994; 3: P.41-44.
https://doi.org/10.1289/ehp.94102s341
PMid:7843135 PMCid:PMC1567426

50. Solisio C., Lodi A., Converti A., Del Borghi M. Cadmium, Zinc, and Chromium (III) removal from aqueous solutions by Zoogloea ramiger. Chemical and Biochemical Engineering Quarterly, 1998; 12: 45-49.

51. Srinath T., Khare S., Ramteke P.W. Isolation of hexavalent chromium-reducing Cr-tolerant facultative anaerobes from tannery effluent. J. Gen. Appl. Microbiol, 2001; 47(6): 307-312.
https://doi.org/10.2323/jgam.47.307
PMid:12483605

52. Sugiyama M. Reagent composition for measuring hydrogen sulfide and method for measuring hydrogen sulfide/ United States Patent No 6340596, 2002.

53. Tebo B.M., Obraztsova A.Y. Sulfate-reducing bacterium grows with Cr (VI), U (VI), Mn (IV), and Fe (III) as electron acceptors. FEMS Microbiol. Lett, 1998; 162(1): 193-198.
https://doi.org/10.1111/j.1574-6968.1998.tb12998.x

54. Toxicological review of hexavalent chromium. U.S. Environmental Protection Agency, Washington DC, 1998: 77.

55. Viti C., Pace A., Giovannetti L. Characterization of Cr (VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr. Microbiol, 2003; 46(1): 1-5.
https://doi.org/10.1007/s00284-002-3800-z
PMid:12432455

56. Wang P.C., Mori T., Komori K. et al. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol, 1989; 55(7): 1665-1669.

57. Wang Y.T., Shen H. Bacterial reduction of hexavalent chromium. J. Ind. Microbiol, 1995; 14(2): 159-163.
https://doi.org/10.1007/BF01569898
PMid:7766208


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.