ARO4 GENE – A NEW DOMINANT SELECTIVE MARKER FOR YEASTS CANDIDA FAMATA (CANDIDA FLARERI) AND HANSENULA POLYMORPHA (PICHIA ANGUSTA)

K. V. Dmytruk


DOI: http://dx.doi.org/10.30970/sbi.0402.090

Abstract


ARO4 gene encodes the enzyme 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase catalyses the first step in aromatic amino acid biosynthesis in prokaryotes, plants and fungi. Successful application of modified ARO4m gene encoding DAHP synthase insensitive to the feedback inhibition by tyrosine for selection of Candida famata and Hansenula polymorpha yeasts transformants resistant to the DL-4-fluoro-phenylalanine is described in this work. Integrative plasmid harboring the marker transformed both yeasts with frequency up to 50 transformants per μg of DNA.


Keywords


dominant selective marker, yeast, Candida famata, Hansenula polymorpha

References


1. Adam A.C., Gonzаlez-Blasco G., Rubio-Texeira M., Polaina J. Transformation of Escherichia coli with DNA from Saccharomyces cerevisiae cell lysates. Appl. Environ. Microbiol, 1999, 65(12):5303-5306.

2. Akada R. Genetically modified industrial yeast ready for application. J. Biosci. Bioeng, 2002, 94(6):536-544.
https://doi.org/10.1263/jbb.94.536
PMid:16233347

3. Cebollero E., Gonzalez R. Comparison of two alternative dominant selectable markers for wine yeast transformation. Appl. Environ. Microbiol, 2004, 70(12): 7018-7023.
https://doi.org/10.1128/AEM.70.12.7018-7023.2004
PMid:15574895 PMCid:PMC535142

4. Dmytruk K.V., Voronovsky A.Y., Sibirny A.A. Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr. Genet, 2006, 50(3): 183-191.
https://doi.org/10.1007/s00294-006-0083-0
PMid:16770625

5. Faber K.N., Haima P., Harder W. et al. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr. Genet, 1994, 25: 305-310.
https://doi.org/10.1007/BF00351482
PMid:8082173

6. Fukada K., Asano K., Ouchi K., Takasawa S. Feedback-insensitive mutation of 3-deoxy-D-arabino-heptolusonate-7-phosphate synthase caused by a single nucleotide substitution of ARO4 structural gene in Saccharomyces cerevisiae. J. Ferment. Bioeng, 1992, 74: 117-119.
https://doi.org/10.1016/0922-338X(92)80012-8

7. Fukada K., Watanabe M., Asano K. Altered regulation of aromatic amino acid biosynthesis in β-phenylethyl-alcohol-overproducing mutants of sake yeast Saccharomyces cerevisiae. Agric. Biol. Chem, 1990, 54: 3151-3156.
https://doi.org/10.1080/00021369.1990.10870488

8. Fukuda K., Watanabe M., Asano K. et al. A mutated ARO4 gene for feedback-resistant DAHP synthase which causes both o-fluoro-DL-phenylalanine resistance and β-phenethyl-alcohol overproduction in Saccharomyces cerevisiae. Curr. Genet, 1991, 20: 453-456.
https://doi.org/10.1007/BF00334771
PMid:1723662

9. Fukuda K., Watanabe M., Asano K. et al. Breeding of brewing yeast producing a large amount of β-phenethyl-alcohol and β-phenethyl acetate. Agric. Biol. Chem, 1990, 54: 269-271.
https://doi.org/10.1080/00021369.1990.10869930

10. Gasson M.J. Gene transfer from genetically modified food. Curr. Opin. Biotechnol, 2000, 11(5): 505-508.
https://doi.org/10.1016/S0958-1669(00)00136-1

11. Gellissen G. Hansenula polymorpha: Biology and Applications. Weinheim: Wiley-VCH, 2002, 352 p.
https://doi.org/10.1002/3527602356

12. Heefner D.L., Weaver C.A., Yarus M.J., Burdzinski L.A. Method for producing riboflavin with Candida famata. United States Patent 5164303, 11/17/1992.
https://doi.org/10.1016/0734-9750(93)90086-3

13. Ishchuk O.P., Dmytruk K.V., Rohulya O.V. et al. Development of a promoter assay system for the flavinogenic yeast Candida famata based on the Kluyveromyces lactis β-galactosidase LAC4 reporter gene. Enzyme Microb. Technol, 2008, 42: 208-215.
https://doi.org/10.1016/j.enzmictec.2007.09.008

14. Lahtchev K.L., Semenova V.D., Tolstorukov I.I. et al. Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732. Arch. Microbiol, 2002, 177: 150-158.
https://doi.org/10.1007/s00203-001-0370-6
PMid:11807564

15. Sambrook J., Fritsh E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989, 253 p.

16. Sanchez S., Demain A. Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology, 2008, 1(4): 283-319.
https://doi.org/10.1111/j.1751-7915.2007.00015.x
PMid:21261849 PMCid:PMC3815394

17. Satyanarayana T., Kunze G. Yeast Biotechnology: Diversity and Applications. Köthen: Springer, 2009, 744 p.
https://doi.org/10.1007/978-1-4020-8292-4

18. Stahmann K.-P., Revuelta J.L., Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl. Microbiol. Biotechnol, 2000, 53: 509-516.
https://doi.org/10.1007/s002530051649
PMid:10855708

19. Voronovsky A., Abbas C., Fayura L. et al. Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res, 2002, 2: 381-388.
https://doi.org/10.1016/S1567-1356(02)00112-5


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.