MOLECULAR MECHANISMS OF NITRIC OXIDE DEPOSITION IN ERYTHROCYTES

N. O. Sybirna, M. Ya. Lyuta, N. I. Klymyshyn


DOI: http://dx.doi.org/10.30970/sbi.0401.080

Abstract


Analysis of literature and obtained experimental data concerning the biological role of nitrosyl complexes of hemoglobin were carried out. The contemporary understanding of molecular mechanisms of forming, metabolism and deposition of nitric oxide was generalized. The enzymatic and non-enzymatic pathways of NO-forming were described, as well as the key enzymes of nitric oxide cycle and their regulation. The role of erythrocytes in NO deposition was thoroughly studied and biological functions of nitrosyl complexes of hemoglobin were investigated. The review presents obtained data for nitrosation/nitrosylation of deoxyhemoglobin in the in vitro system and the characteristics of changes in electronic spectra of deoxyhemoglobin and nitrosylhemoglobin under experimental diabetes mellitus. Advisability and prospectiveness of further investigation of proteins’ modification by products of NO-metabolism were substantiated in order to search for ways of correction and diagnostics of pathologies with various etiologies.


Keywords


erythrocyte, nitric oxide, nitrosyle complexes of hemoglobin

References


1. Амосова К.М., Гула Н.М., Губський Ю.І. та ін. Стан NO-системи в еритроцитах крові хворих з первинною легеневою гіпертензією та його зміни під час лікування дилтіаземом. Серце і судини, 2004; 2: 76-83.

2. Білий О.І., Дудок К.П., Лук'янець В.М. Визначення вмісту гемоглобіну та його лігандних форм у цільній крові за методом абсорбційної спектроскопії. Львів: Видавництво ЛДУ, 1998. 12 с.

3. Борисенко Г.Г., Осипов А.Н., Казаринов К.Д. Фотохимические реакции нитрозильных комплексов гемоглобина под действием низкоинтенсивного лазерного излучения в видимом диапазоне. Биохимия, 1997; 62 (6): 774-780.

4. Горрен А.К.Ф., Майер Б. Универсальная и комплексная энзимология синтазы оксида азота. Биохимия, 1998; 63(7): 870-880.

5. Дмитренко Н.П., Холиан А. Роль взаимодействия путей метаболизма формальдегида и оксида азота в механизме их токсического действия. Токсическое действие оксида азота. Укр. біохім. журн, 2005; 77 (5): 5-23.

6. Дударев В.П. Роль гемоглобина в адаптации к гипоксии. Киев: Наук. думка, 1979. 149 с.

7. Зинчук В.В. Участие оксида азота в формировании кислородсвязывающих свойств гемоглобина. Успехи физиол. наук, 2003; 34(2): 33-45.

8. Осипов А.Н., Борисенко Г.Г., Владимиров Ю.А. Биологическая роль нитрозильных комплексов гемопротеинов. Успехи биол. химии, 2007; 47: 259-292.

9. Пат. UA45158. Пристрій для отримання і дозованої подачі оксиду азоту і побудови кривих дисоціації оксигемоглобіну в присутності NO / Коробов В.М., Федорович А.М., Соколик Н.В. (Україна); опубл. 17.06.2002 р. Бюл. № 6.

10. Реутов В.П., Сорокина Е.Г., Охотин В.Е., Косицин Н.С. Циклические превращения оксида азота в организме млекопитающих. Москва: Наука, 1999. 165 с.

11. Реутов В.П., Сорокина Е.Г. NO-синтазная и нитритредуктазная компоненты цикла оксида азота. Биохимия, 2000; 63(7): 1029-1040.

12. Реутов В.П., Гоженко Е.А., Охотин В.Е. и др. Роль оксида азота в регуляции работы миокарда. Цикл оксида азота и NO-синтазные системы в миокарде. Актуальные проблемы транспортной медицины, 2007; 4: 89-102.

13. Сагач В.Ф., Доломан Л.Б., Коцюруба А.В. та ін. Збільшений вміст стабільних метаболітів оксиду азоту в крові мешканців високогір'я. Фізіол. журн, 2002; 48 (5): 3-8.

14. Сибірна Н.О., Люта М.Я., Бурда В.А. та ін. Вплив системи L-аргінін: NO на динаміку вмісту лігандних форм та спектральні характеристики гемоглобіну за умов цукрового діабету 1 типу. Медична хімія, 2004; 6(3): 26-29.

15. Сибірна Н.О., Люта М.Я., Бурда В.А., Федорович А.М. Вплив аміногуанідину на фізико-хімічні властивості гемоглобіну за умов цукрового діабету 1-го типу. Біологія тварин, 2005; 7(1-2): 194-199.

16. Сомова Л.М., Плехова Н.Г. Оксид азота как медиатор воспаления. Вестник ДВО РАН, 2006; 2: 77-80.

17. Сосунов А.А. Оксид азота как межклеточный посредник. Соросовский образоват. журн, 2000; 6: 27-34.

18. Baker P.R., Schopfer F.J., Sweeney S., Freeman B.A. Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantitation. Proc. Natl. Acad. Sci. USA, 2004; 101(32): 11577-11582.
https://doi.org/10.1073/pnas.0402587101
PMid:15273286 PMCid:PMC511023

19. Bryan N.S., Rassaf T., Rodrigez J. et al. Bound NO in human red blood cells: fact or artifact? Nitric Оxide, 2004; 10: 221-228.
https://doi.org/10.1016/j.niox.2004.04.008
PMid:15275868

20. Сhin S.Y., Padney K.N., Shi S.J. et al. Increased activity and expression of Ca-dependent NOS in real cortex of ANG II-infused hypertensive rats. Amer. J. Physiol, 1999; 277(5): 798-804.
https://doi.org/10.1152/ajprenal.1999.277.5.F797
PMid:10564245 PMCid:PMC2574501

21. Cosby K., Partovi K.S., Grawford J.H. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nature Medicine, 2003; 9: 1498-1505.
https://doi.org/10.1038/nm954
PMid:14595407

22. Dejam A., Hunter C.J., Schechter A.N., Gladwin M.T. Emerging role of nitrite in human biology. Blood Cells Mol. Dis, 2004; 32(3): 423-429.
https://doi.org/10.1016/j.bcmd.2004.02.002
PMid:15121102

23. Dejam A., Hunter C.J., Pelletier M.M. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Blood, 2005; 106(2): 734-739.
https://doi.org/10.1182/blood-2005-02-0567
PMid:15774613 PMCid:PMC1895176

24. Doyle M.P., Pickering R.A., DeWeert T.M. et al. Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. Journ. of Biological Chemistry, 1981; 256: 12393-12398.

25. Espey M.G., Miranda K.M., Thomas D.D. et al. A chemical perspective on the interplay between NO, reactive oxygen species and reactive nitrogen oxide species. Ann. NY Acad. Sci, 2002; 962: 195-206.
https://doi.org/10.1111/j.1749-6632.2002.tb04068.x
PMid:12076975

26. Gladwin M.T., Ognibene F.P., Shelhamer J.H. et al. Schlechter A.N. Nitric oxide transport on sickle cell hemoglobin: where does bind? Free. Radic. Res, 2001; 2: 175-180.
https://doi.org/10.1080/10715760100300721
PMid:11697198

27. Gorenflo M., Zheng C., Poge A. et al. Metabolites of the L-arginine-NO-pathway in patients with left-to-right shunt. Clin. Lab, 2001; 47: 441-447.

28. Grawford J.H., Chacko B.K., Pruitt H.M. et al. Transduction of NO-bioactivity by the red blood cell in sepsis: novel mechanisms of vasdilatation during acute inlammatory disease. Blood, 2004; 104: 1375-1381.
https://doi.org/10.1182/blood-2004-03-0880
PMid:15150083

29. Gupta M. P., Van Evanoff, Hart C.M. Nitric oxide attenuates hydrogen peroxide mediated injury to porcine pulmonary artery endothelial cells. Am. Physiol. Soc, 1997; 20: L1133-1141
https://doi.org/10.1152/ajplung.1997.272.6.L1133
PMid:9227515

30. Herold S., Boccini F. NO* release from MbFe(II)NO and HbFe(II)NO after oxidation by peroxynitrite. Inorg. Chem, 2006; 45(17): 6933-6943.
https://doi.org/10.1021/ic060469g
PMid:16903752

31. Hunter C.J., Dejam A., Blood A.B. et al. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nature Medicine, 2004; 10: 1122-1127.
https://doi.org/10.1038/nm1109
PMid:15361865

32. Ignarro L.J., Napoli C. Novel features of nitric oxide synthase, and atherosclerosis. Curr. Atheroscler. Rep, 2004; 6: 281-287.
https://doi.org/10.1007/s11883-004-0059-9
PMid:15191702

33. Jagger J.E., Bateman R.M., Ellsworth M.L., Ellis C.G. Role of erythrocyte in regulating local O2 delivery mediated by hemoglobin oxygenation. Am. Journ. of Physiology - Heart and Circulatory Physiology, 2001; 280(6): H2833-2839.
https://doi.org/10.1152/ajpheart.2001.280.6.H2833
PMid:11356642

34. Jansson E., Huang L., Malkey R. et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nature Chemical Biology, 2008; 4(7): 411-417.
https://doi.org/10.1038/nchembio.92
PMid:18516050

35. Jia L., Bonaventura C., Bonaventura J., Stamler J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature, 1996; 380(6571): 221-226.
https://doi.org/10.1038/380221a0
PMid:8637569

36. Kelm M. Flow-mediated dilatation in human circulation: diagnostic and therapeutic aspects. Am. Journ. of Physiology - Heart and Circulatory Physiology, 2002; 282: H1-H5.
https://doi.org/10.1152/ajpheart.2002.282.1.H1
PMid:11748041

37. Klebanoff S.J. Myeloperoxidase: friend and foe. J. Leukocyte Biol, 2005; 77(1): 529-557.
https://doi.org/10.1189/jlb.1204697
PMid:15689384

38. Kleinbongard P., Dejam A., Lauer T. et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radical Biology and Medicine, 2003; 35: 790-796.
https://doi.org/10.1016/S0891-5849(03)00406-4

39. Kosaka H., Tyuma I. Mechanism of autocatalytic oxidation of oxyhemoglobin by nitrite. Environmental Health Perspectives, 1987; 73: 147-151.
https://doi.org/10.1289/ehp.8773147
PMid:2822381 PMCid:PMC1474547

40. Kotsonis P., Frey A., Frohlich L. Autoinhibition of neuronal nitric oxide synthase: distinct effects of reactive nitrogen and oxygen species on enzyme activity. Biochem. J, 1999; 340: 745-752.
https://doi.org/10.1042/bj3400745
PMid:10359660 PMCid:PMC1220307

41. Lauer T., Preik M., Rassaf T. et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proceedings of National Academy of Sciences of the USA, 2001; 98: 12814-12819.
https://doi.org/10.1073/pnas.221381098
PMid:11606734 PMCid:PMC60136

42. Li H., Cui H., Kundu T. et al. Nitric oxide production from nitrite occurs primarily in tissues not in the blood critical role of xanthine oxidase and aldehyde oxidase. J. Biol. Chem, 2008; 283(26): 17855-17863.
https://doi.org/10.1074/jbc.M801785200
PMid:18424432 PMCid:PMC2440597

43. Liy X., Miller M.J., Joshi M.S. et al. Diffusion-limited reaction of free nitric oxide with erytrocytes. J. Biol. Chem, 1998; 273(30): 18709-18713.
https://doi.org/10.1074/jbc.273.30.18709
PMid:9668042

44. Lundberg J., Gladwin M., Ahluwalia A. et al. Nitrate and nitrite in biology nutrition and therapeutics. Nat. Chem. Biol, 2009; 5 (12): 865-869.
https://doi.org/10.1038/nchembio.260
PMid:19915529 PMCid:PMC4038383

45. Lundberg J.O., Gladwin M.T., Ahluwalia A. Nitrate and nitrite in biology, nutrition and therapeutics. Nat. Chem. Biol, 2009; 5(12): 865-869.
https://doi.org/10.1038/nchembio.260
PMid:19915529 PMCid:PMC4038383

46. Lundberg J.O., Weitzberg E. The biological role of nitrate and nitrite: the times they are a-changin. Nitric Oxide, 2010; 22(2): 61-63.
https://doi.org/10.1016/j.niox.2009.11.004
PMid:19919855

47. May J.M., Qu Z.-C., Xia L. et al. Nitrite uptake and metabolism and oxidant stress in human erythrocytes. Am. J. Physiol, 2000; 279: C1946-C1954.
https://doi.org/10.1152/ajpcell.2000.279.6.C1946
PMid:11078710

48. Meulemans A., Delsenne F. Measurement of nitrite and nitrate levels in biological samples by capillary electrophoresis. Journ. of Chromatography B: Biomedical Applications, 1994; 660; 401-404.
https://doi.org/10.1016/0378-4347(94)00310-6

49. Moncada S., Palmer R.M.J, Higgs E.A. Nitric Oxide, biology, pathophysiology and pharmacologiy. Pharmacological Reviews, 1991; 43: 109-142

50. Nagababy E., Ramasamy S. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J. Biol. Chem, 2003; 278: 46349-46356.
https://doi.org/10.1074/jbc.M307572200
PMid:12952953

51. Patel R.P., Hogg N., Spenser N.Y. et al. Biochemical characterization of S-nitrosohemoglobin effects on oxygen binding and transnitrosation. J. Biol. Chem, 1999; 274(22): 15487-15492.
https://doi.org/10.1074/jbc.274.22.15487
PMid:10336440

52. Perrella M., Shrager R.I., Ripamonti M. et al. Mechanism of the oxidation reaction of deoxyhemoglobin as studied by isolation of the intermediates suggests tertiary structure dependent cooperativity. Biochemistry, 1993; 32(19): 5233-5238.
https://doi.org/10.1021/bi00070a035
PMid:8494900

53. Reutov V.P., Okhotin V.E., Shuklin A.V. Nitric oxide (NO) and NO cycle in myocardium: molecular, biochemical and physiological aspects. Usp Fiziol Nauk, 2007; 38(4): 39-58.

54. Rhodes P.M., Leone A.M., Francis P.L. et al. The L-arginine: nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochemical and Biophysical Research Communications, 1995; 209: 590-596.
https://doi.org/10.1006/bbrc.1995.1541
PMid:7794389

55. Snyder S.H., Jaffrey S.R. Vessels vivified by Akt acting on NO syntase. Nature Cel. Biol, 1999; 1: E95-96.
https://doi.org/10.1038/12093
PMid:10559931

56. Stamler J.S., Simon D.I., Osborne J.A. et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA, 1992; 89(1): 444-448.
https://doi.org/10.1073/pnas.89.1.444
PMid:1346070 PMCid:PMC48254

57. Stamler J.S., Jia L., Eu J.P., McMahon T.J. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science, 1997; 276: 2034-2037.
https://doi.org/10.1126/science.276.5321.2034
PMid:9197264

58. Taylor B.S, Alarcon L.H., Billiar T.R. Inducible Nitric Oxide Synthase in the Liver: Regulation and Function. Biochemistry, 1997; 6(7): 766-795.

59. Valance P., Patton S., Bhagat K. et al. Direct measurement of nitric oxide in human beings. Lancet, 1995; 345: 153-154.
https://doi.org/10.1016/S0140-6736(95)91211-8

60. Van Faassen E.E., Bahrami S, Feelisch M. et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med. Res. Rev, 2009; 29(5): 683-741.
https://doi.org/10.1002/med.20151
PMid:19219851 PMCid:PMC2725214

61. Wang X., Tanus-Santos J.E., Reiter C.D. Biological activity of nitric oxide in the plasmatic compartment. Proceedings of the National Academy of Sciences of the United States of America, 2004; 101: 1147-11482.
https://doi.org/10.1073/pnas.0402201101
PMid:15258287 PMCid:PMC509225

62. Weitzberg E., Lundberg J.O. NO generation from inorganic nitrate and nitrite: Role in physiology, nutrition and therapeutics. Arch. Pharm. Res, 2009; 32(8): 1119-1126.
https://doi.org/10.1007/s12272-009-1803-z
PMid:19727604

63. Zinchuk V. Effect of NO-synthase inhibition on hemoglobin-oxygen affinity and lipid peroxidation in rabbits during fever. Respiration, 1999b; 66(5): 448-454.
https://doi.org/10.1159/000029409
PMid:10516542

64. Zinchuk V.V., Dorokhina L.V., Maltsev A.N. Prooxidant-antioxidant balance in rats under hypotermia combined with modified hemoglobin-oxygen affinity. J. Therm. Biol, 2002; 27(5): 345-352.
https://doi.org/10.1016/S0306-4565(01)00099-7


Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Studia biologica

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.